DOI QR코드

DOI QR Code

Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside

  • Kim, Jin-Kwang (KI for the BioCentry, Korea Advanced Institute of Science and Technology) ;
  • He, Dan (KI for the BioCentry, Korea Advanced Institute of Science and Technology) ;
  • Liu, Qing-Mei (KI for the BioCentry, Korea Advanced Institute of Science and Technology) ;
  • Park, Hye-Yoon (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Jung, Mi-Sun (College of Humanities and Social Science, Youngdong University) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Sun-Chang (KI for the BioCentry, Korea Advanced Institute of Science and Technology) ;
  • Im, Wan-Taek (KI for the BioCentry, Korea Advanced Institute of Science and Technology)
  • 투고 : 2012.12.26
  • 심사 : 2013.01.31
  • 발행 : 2013.04.28

초록

A Gram-negative, strictly aerobic, non-motile, non-spore-forming, and rod-shaped bacterial strain designated FW-$6^T$ was isolated from a freshwater sample and its taxonomic position was investigated by using a polyphasic approach. Strain FW-$6^T$ grew optimally at $10-42^{\circ}C$ and at pH 7.0 on nutrient and R2A agar. Strain FW-$6^T$ displayed ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to Rd. On the basis of 16S rRNA gene sequence similarity, strain FW-$6^T$ was shown to belong to the family Sphingomonadaceae and was related to Novosphingobium aromaticivorans DSM $12444^T$ (98.1% sequence similarity) and N. subterraneum IFO $16086^T$ (98.0%). The G+C content of the genomic DNA was 64.4%. The major menaquinone was Q-10 and the major fatty acids were summed feature 7 (comprising $C_{18:1}{\omega}9c/{\omega}12t/{\omega}7c$), summed feature 4 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2OH$), $C_{16:0}$, and $C_{14:0}$ 2OH. DNA and chemotaxonomic data supported the affiliation of strain FW-$6^T$ to the genus Novosphingobium. Strain FW-$6^T$ could be differentiated genotypically and phenotypically from the recognized species of the genus Novosphingobium. The isolate that has ginsenoside converting ability therefore represents a novel species, for which the name Novosphingobium ginsenosidimutans sp. nov. is proposed, with the type strain FW-$6^T$ (= KACC $16615^T$ = JCM $18202^T$).

키워드

참고문헌

  1. An, D. S., C. H. Cui, H. G. Lee, L. Wang, S. C. Kim, S. T. Lee, et al. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76: 5827-5836. https://doi.org/10.1128/AEM.00106-10
  2. Atlas, R. M. 1993. Handbook of Microbiological Media. L. C. Parks (ed.). CRC Press, Boca Raton, FL, U.S.A
  3. Attele, A. S., J. A. Wu, and C. S. Yuan. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  4. Baek, S. H., J. H. Lim, L. Jin, H. G. Lee, and S. T. Lee. 2011. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 61: 2464-2468. https://doi.org/10.1099/ijs.0.024307-0
  5. Balkwill, D. L., G. R. Drake, R. H. Reeves, J. K. Fredrickson, D. C. White, D. B. Ringelberg, et al. 1997. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int. J. Syst. Bacteriol. 47: 191-201. https://doi.org/10.1099/00207713-47-1-191
  6. Buck, J. D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993.
  7. Cappuccino, J. G. and N. Sherman. 2002. Microbiology: A Laboratory Manual, 6th Ed. Pearson Education, Inc., California.
  8. Christensen, L. P. 2009. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1-99.
  9. Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  10. Cui, C. H., T. E. Choi, H. Yu, F. Jin, S. T. Lee, S. C. Kim, and W. T. Im. 2011. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J. Microbiol. 49: 393-398. https://doi.org/10.1007/s12275-011-1176-0
  11. Euzeby, J. P. 1997. List of bacterial names with standing in nomenclature: A folder available on the Internet. Int. J. Syst. Bacteriol. 47: 590-592. https://doi.org/10.1099/00207713-47-2-590
  12. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229. https://doi.org/10.1099/00207713-39-3-224
  13. Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  14. Fitch, W. M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416. https://doi.org/10.2307/2412116
  15. Gupta, S. K., D. Lal, and R. Lal. 2009. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 59: 156-161. https://doi.org/10.1099/ijs.0.65743-0
  16. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  17. Hiraishi, A., Y. Ueda, J. Ishihara, and T. Mori. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42: 457-469. https://doi.org/10.2323/jgam.42.457
  18. Hong, H., C. H. Cui, J. K. Kim, F. X. Jin, S. C. Kim, and W. T. Im. 2012. Enzymatic biotransformation of ginsenoside $Rb_1$ and gypenoside XVII into ginsenosides Rd and $F_2$ by recombinant $\beta$-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418-424. https://doi.org/10.5142/jgr.2012.36.4.418
  19. Im, W. T., S. Y. Kim, Q. M. Liu, J. E. Yang, S. T. Lee, and T. H. Yi. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48: 623-628. https://doi.org/10.1007/s12275-010-0001-5
  20. Jin, F., H. Yu, Y. Fu, D. S. An, W. T. Im, S. T. Lee, and J. A. Teixeira da Silva. 2012. Biotransformation of ginsenosides (Ginseng saponins). Int. J. Biomed. Pharm. Sci. 6: 33-44.
  21. Kampfer, P., C. C. Young, H. J. Busse, S. Y. Lin, P. D. Rekha, A. B. Arun, et al. 2011. Novosphingobium soli sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61: 259-263. https://doi.org/10.1099/ijs.0.022178-0
  22. Kim, J. K., C. H. Cui, M. H. Yoon, S. C. Kim, and W. T. Im. 2012. Bioconversion of major ginsenosides $Rg_1$ to minor ginsenoside $F_1$ using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J. Biotechnol. 161: 294-301. https://doi.org/10.1016/j.jbiotec.2012.06.021
  23. Kim, S. K. and J. H. Park. 2011. Trends in ginseng research in 2010. J. Ginseng Res. 35: 389-398. https://doi.org/10.5142/jgr.2011.35.4.389
  24. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
  25. Lee, J. H., J. Y. Ahn, T. J. Shin, S. H. Choi, B. H. Lee, S. H. Hwang, et al. 2011. Effects of minor ginsenosides, ginsenoside metabolites, and ginsenoside epimers on the growth of Caenorhabditis elegans. J. Ginseng. Res. 35: 375-383. https://doi.org/10.5142/jgr.2011.35.3.375
  26. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  27. Minnikin, D. E., P. V. Patel, L. Alshamaony, and M. Goodfellow. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol. 27:104-117. https://doi.org/10.1099/00207713-27-2-104
  28. Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.). Current Protocols in Molecular Biology. Wiley, New York, USA
  29. Park, C. S., M. H. Yoo, K. H. Noh, and D. K. Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19. https://doi.org/10.1007/s00253-010-2567-6
  30. Qu, C. L., Y. P. Bai, X. Q. Jin, Y. T. Wang, K. Zhang, J. Y. You, and H. Q. Zhang. 2009. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem. 115: 340-346. https://doi.org/10.1016/j.foodchem.2008.11.079
  31. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  32. Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.
  33. Shi, W., Y. T. Wang, J. Li, H. Q. Zhang, and L. Ding. 2007. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 102: 664-668. https://doi.org/10.1016/j.foodchem.2006.05.053
  34. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
  35. Takeuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51: 1405-1417.
  36. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  37. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  38. Wang, L., D. S. An, S. G. Kim, F. X. Jin, S. C. Kim, S. T. Lee, and W. T. Im. 2012. Ramlibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity. J. Microbiol. Biotechnol. 22: 311-315. https://doi.org/10.4014/jmb.1106.06041
  39. Wayne, L. G. 1988. International Committee on Systematic Bacteriology: Announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 268: 433-434.
  40. Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34: 99-119. https://doi.org/10.1111/j.1348-0421.1990.tb00996.x
  41. Zhao, X., J. Wang, J. Li, L. Fu, J. Gao, X. Du, et al. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J. Ind. Microbiol. Biotechnol. 36: 721-726. https://doi.org/10.1007/s10295-009-0542-y

피인용 문헌

  1. Novosphingobium kunmingense sp. nov., isolated from a phosphate mine vol.64, pp.7, 2013, https://doi.org/10.1099/ijs.0.057273-0
  2. Novosphingobium aquiterrae sp. nov., isolated from ground water vol.64, pp.9, 2013, https://doi.org/10.1099/ijs.0.060749-0
  3. Parablastomonas arctica gen. nov., sp. nov., isolated from high Arctic glacial till vol.65, pp.1, 2015, https://doi.org/10.1099/ijs.0.067231-0
  4. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere vol.65, pp.1, 2013, https://doi.org/10.1099/ijs.0.070375-0
  5. Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum vol.65, pp.9, 2013, https://doi.org/10.1099/ijs.0.000339
  6. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides vol.36, pp.6, 2013, https://doi.org/10.3109/07388551.2015.1083942
  7. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations vol.101, pp.10, 2013, https://doi.org/10.1007/s00253-017-8279-4
  8. Actinocrinis puniceicyclus gen. nov., sp. nov., an actinobacterium isolated from an acidic spring vol.67, pp.3, 2017, https://doi.org/10.1099/ijsem.0.001667
  9. Analysis of the microbiota associated with the blackening of activated sludge vol.157, pp.None, 2021, https://doi.org/10.1016/j.ibiod.2020.105140
  10. Triterpenoid and Steroidal Saponins Differentially Influence Soil Bacterial Genera vol.10, pp.10, 2013, https://doi.org/10.3390/plants10102189