• Title/Summary/Keyword: Novosphingobium ginsenosidimutans

Search Result 1, Processing Time 0.013 seconds

Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside

  • Kim, Jin-Kwang;He, Dan;Liu, Qing-Mei;Park, Hye-Yoon;Jung, Mi-Sun;Yoon, Min-Ho;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.444-450
    • /
    • 2013
  • A Gram-negative, strictly aerobic, non-motile, non-spore-forming, and rod-shaped bacterial strain designated FW-$6^T$ was isolated from a freshwater sample and its taxonomic position was investigated by using a polyphasic approach. Strain FW-$6^T$ grew optimally at $10-42^{\circ}C$ and at pH 7.0 on nutrient and R2A agar. Strain FW-$6^T$ displayed ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to Rd. On the basis of 16S rRNA gene sequence similarity, strain FW-$6^T$ was shown to belong to the family Sphingomonadaceae and was related to Novosphingobium aromaticivorans DSM $12444^T$ (98.1% sequence similarity) and N. subterraneum IFO $16086^T$ (98.0%). The G+C content of the genomic DNA was 64.4%. The major menaquinone was Q-10 and the major fatty acids were summed feature 7 (comprising $C_{18:1}{\omega}9c/{\omega}12t/{\omega}7c$), summed feature 4 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2OH$), $C_{16:0}$, and $C_{14:0}$ 2OH. DNA and chemotaxonomic data supported the affiliation of strain FW-$6^T$ to the genus Novosphingobium. Strain FW-$6^T$ could be differentiated genotypically and phenotypically from the recognized species of the genus Novosphingobium. The isolate that has ginsenoside converting ability therefore represents a novel species, for which the name Novosphingobium ginsenosidimutans sp. nov. is proposed, with the type strain FW-$6^T$ (= KACC $16615^T$ = JCM $18202^T$).