DOI QR코드

DOI QR Code

Diversity and Chemical Defense Role of Culturable Non-Actinobacterial Bacteria Isolated from the South China Sea Gorgonians

  • Jiang, Peng (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences) ;
  • Zhang, Xiaoyong (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences) ;
  • Xu, Xinya (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences) ;
  • He, Fei (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences) ;
  • Qi, Shuhua (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
  • 투고 : 2012.08.06
  • 심사 : 2012.11.16
  • 발행 : 2013.04.28

초록

The diversity of culturable non-actinobacterial (NA) bacteria associated with four species of South China Sea gorgonians was investigated using culture-dependent methods followed by analysis of the bacterial 16S rDNA sequence. A total of 76 bacterial isolates were recovered and identified, which belonged to 21 species of 7 genera, and Bacillus was the most diverse genus. Fifty-one percent of the 76 isolates displayed antibacterial activities, and most of them belonged to the Bacillus genus. From the culture broth of gorgonian-associated Bacillus methylotrophicus SCSGAB0092 isolated from gorgonian Melitodes squamata, 11 antimicrobial lipopeptides including seven surfactins and four iturins were obtained. These results imply that Bacillus strains associated with gorgonians play roles in coral defense mechanisms through producing antimicrobial substances. This study, for the first time, compares the diversity of culturable NA bacterial communities among four species of South China Sea gorgonians and investigates the secondary metabolites of gorgonian-associated B. methylotrophicus SCSGAB0092.

키워드

참고문헌

  1. Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin. Plant Physiol. 134: 307-319. https://doi.org/10.1104/pp.103.028712
  2. Cameotra, S. S. and R. S. Makkar. 2010. Biosurfactantenhanced bioremediation of hydrophobic pollutants. Pure Appl. Chem. 82: 97-116. https://doi.org/10.1351/PAC-CON-09-02-10
  3. Chen, H., L. Wang, C. X. Su, G. H. Gong, P. Wang, and Z. L. Yu. 2008. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett. Appl. Microbiol. 47: 180-186. https://doi.org/10.1111/j.1472-765X.2008.02412.x
  4. Coil, J. C. 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem. Rev. 92: 613-631. https://doi.org/10.1021/cr00012a006
  5. Ducklow, H. W. and R. Mitchell. 1979. Bacterial population and adaptations in the mucous layers on living corals. Limnol. Oceanogr. 24: 715-725. https://doi.org/10.4319/lo.1979.24.4.0715
  6. Fenical, W. 1993. Chemical studies of marine bacteria: Developing a new resource. Chem. Rev. 93: 1673-1683. https://doi.org/10.1021/cr00021a001
  7. Fickers, P., J. S. Guez, C. Damblon, V. Leclere, M. Bechet, P. Jacques, and B. Joris. 2009. High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl. Environ. Microbiol. 75: 4636-4640. https://doi.org/10.1128/AEM.00548-09
  8. Gnanambal, K. M. E., C. Chellaram, and J. Patterson. 2005. Isolation of antagonistic marine bacteria from the surface of the gorgonian corals at Tuticorin, south east coast of india. Indian J. Marine Sci. 34: 316-319.
  9. Gray, M. A., R. P. Stone, M. R. Mclaughlin, and C. A. Kellogg. 2011. Microbial consortia of gorgonian corals from the Aleutian islands. FEMS Microbiol. Ecol. 76: 109-120. https://doi.org/10.1111/j.1574-6941.2010.01033.x
  10. Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698. https://doi.org/10.1016/S0031-9422(02)00365-5
  11. Kanlayavattanakul, M. and N. Lourith. 2010. Lipopeptides in cosmetics. Int. J. Cosmet. Sci. 32: 1-8. https://doi.org/10.1111/j.1468-2494.2009.00543.x
  12. Kracht, M., H. Rokos, M. Ozel, M. Kowall, G. Pauli, and J. Vater. 1999. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. 52: 613-619. https://doi.org/10.7164/antibiotics.52.613
  13. Lau, S. C. K., V. Thiyagarajan, and P. Y. Qian. 2003. The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle (Balanus amphitrite Darwin) settlement. J. Exp. Mar. Biol. Ecol. 282: 43-60. https://doi.org/10.1016/S0022-0981(02)00445-8
  14. Leclere, V., M. Bechet, A. Adam, J. S. Guez, B. Wathelet, M. Ongena, et al. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71: 4577-4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
  15. Li, X. and B. S. H. De. 1995. Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85: 837-842. https://doi.org/10.1094/Phyto-85-837
  16. Mireles II, J. R., A. Toguchi, and R. M. Harshey. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 183: 5848-5854. https://doi.org/10.1128/JB.183.20.5848-5854.2001
  17. Mizumoto, S., M. Hirai, and M. Shoda. 2007. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl. Microbiol. Biotechnol. 75: 1267-1274. https://doi.org/10.1007/s00253-007-0973-1
  18. Mulligan, C. N. 2009. Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci. 14: 372-378. https://doi.org/10.1016/j.cocis.2009.06.005
  19. Nithyanand, P. and S. K. Pandian. 2009. Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol. Ecol. 69: 384-394. https://doi.org/10.1111/j.1574-6941.2009.00723.x
  20. Nitschke, M. and S. G. V. A. Costa. 2007. Biosurfactants in food industry. Trends Food Sci. Technol. 18: 252-259. https://doi.org/10.1016/j.tifs.2007.01.002
  21. Ongena, M. and P. Jacques. 2007. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
  22. Qian, P. Y. 1999. Larval settlement of polychaetes. Hydrobiologia 402: 239-253. https://doi.org/10.1023/A:1003704928668
  23. Rodrigues, L., I. B. Banat, J. Teixera, and R. Oliveira. 2006. Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618. https://doi.org/10.1093/jac/dkl024
  24. Rohwer, F., V. Seguritan, F. Azam, and N. Knowlton. 2002. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243: 1-10. https://doi.org/10.3354/meps243001
  25. Romero, D., A. D. Vicente, R. H. Rakotoaly, S. E. Dufour, J. W. Veening, E. Arrebola, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20: 430-440. https://doi.org/10.1094/MPMI-20-4-0430
  26. Sen, R. 2008. Biotechnology in petroleum recovery: The microbial EOR. Progr. Energy Combust. Sci. 34: 714-724. https://doi.org/10.1016/j.pecs.2008.05.001
  27. Shnit-Orland, M. and A. Kushmaro. 2009. Coral mucusassociated bacteria: A possible first line of defense. FEMS Microbiol. Ecol. 67: 371-380. https://doi.org/10.1111/j.1574-6941.2008.00644.x
  28. Tang, J. S., H. Gao, K. Hong, Y. Yu, M. M. Jiang, H. P. Lin, et al. 2007. Complete assignments of 1H and 13C NMR spectral data of nine surfactin isomers. Magn. Reson. Chem. 45: 792-796. https://doi.org/10.1002/mrc.2048
  29. Toledo-Hernandez, C., A. Zuluaga-Montero, A. Bones-Gonzalez, J. A. Rodriguez, A. M. Sabat, and P. Bayman. 2008. Fungi in healthy and diseased sea fans (Gorgonia veentalina): Is Apergillus sydowwi always the pathogen? Coral Reefs 27: 707-714. https://doi.org/10.1007/s00338-008-0387-2
  30. Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
  31. Wu, Y. Y., C. H. Lu, X. M. Qian, Y. J. Huang, and Y. M. Shen. 2009. Diversity with genotypes, bioactivity and biosynthetic genes of endophytic actinomycetes isolated from three pharmaceutical plants. Curr. Microbiol. 59: 475-482. https://doi.org/10.1007/s00284-009-9463-2
  32. Xu, Y., L. Miao, X. C. Li, X. Xiao, and P. Y. Qian. 2007. Antibacterial and anti-larval activity of deep-sea bacteria from sediments of the West Pacific Ocean. Biofouling 23: 131-137. https://doi.org/10.1080/08927010701219323
  33. Zhang, X. Y., J. Bao, G. H. Wang, F. He, X. Y. Xu, and S. H. Qi. 2012. Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb. Ecol. [In Press] DOI: 10.1007/s00248-012- 0050-x.

피인용 문헌

  1. Bringing microbial interactions to light using imaging mass spectrometry vol.31, pp.6, 2014, https://doi.org/10.1039/c3np70091g
  2. Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea vol.109, pp.1, 2013, https://doi.org/10.1007/s10482-015-0613-1
  3. Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice vol.11, pp.1, 2013, https://doi.org/10.1371/journal.pone.0146764
  4. Lipopeptides from a novel Bacillus methylotrophicus 39b strain suppress Agrobacterium crown gall tumours on tomato plants vol.73, pp.3, 2013, https://doi.org/10.1002/ps.4331
  5. Hygrocin C from marine-derived Streptomyces sp. SCSGAA 0027 inhibits biofilm formation in Bacillus amyloliquefaciens SCSGAB0082 isolated from South China Sea gorgonian vol.102, pp.3, 2018, https://doi.org/10.1007/s00253-017-8672-z