Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12053

Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside  

Kim, Jin-Kwang (KI for the BioCentry, Korea Advanced Institute of Science and Technology)
He, Dan (KI for the BioCentry, Korea Advanced Institute of Science and Technology)
Liu, Qing-Mei (KI for the BioCentry, Korea Advanced Institute of Science and Technology)
Park, Hye-Yoon (Microorganism Resources Division, National Institute of Biological Resources)
Jung, Mi-Sun (College of Humanities and Social Science, Youngdong University)
Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Kim, Sun-Chang (KI for the BioCentry, Korea Advanced Institute of Science and Technology)
Im, Wan-Taek (KI for the BioCentry, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 444-450 More about this Journal
Abstract
A Gram-negative, strictly aerobic, non-motile, non-spore-forming, and rod-shaped bacterial strain designated FW-$6^T$ was isolated from a freshwater sample and its taxonomic position was investigated by using a polyphasic approach. Strain FW-$6^T$ grew optimally at $10-42^{\circ}C$ and at pH 7.0 on nutrient and R2A agar. Strain FW-$6^T$ displayed ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to Rd. On the basis of 16S rRNA gene sequence similarity, strain FW-$6^T$ was shown to belong to the family Sphingomonadaceae and was related to Novosphingobium aromaticivorans DSM $12444^T$ (98.1% sequence similarity) and N. subterraneum IFO $16086^T$ (98.0%). The G+C content of the genomic DNA was 64.4%. The major menaquinone was Q-10 and the major fatty acids were summed feature 7 (comprising $C_{18:1}{\omega}9c/{\omega}12t/{\omega}7c$), summed feature 4 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2OH$), $C_{16:0}$, and $C_{14:0}$ 2OH. DNA and chemotaxonomic data supported the affiliation of strain FW-$6^T$ to the genus Novosphingobium. Strain FW-$6^T$ could be differentiated genotypically and phenotypically from the recognized species of the genus Novosphingobium. The isolate that has ginsenoside converting ability therefore represents a novel species, for which the name Novosphingobium ginsenosidimutans sp. nov. is proposed, with the type strain FW-$6^T$ (= KACC $16615^T$ = JCM $18202^T$).
Keywords
16S rRNA gene; polyphasic taxonomy; ginsenoside; Novosphingobium ginsenosidimutans;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Atlas, R. M. 1993. Handbook of Microbiological Media. L. C. Parks (ed.). CRC Press, Boca Raton, FL, U.S.A
2 Attele, A. S., J. A. Wu, and C. S. Yuan. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693.   DOI   ScienceOn
3 Baek, S. H., J. H. Lim, L. Jin, H. G. Lee, and S. T. Lee. 2011. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 61: 2464-2468.   DOI   ScienceOn
4 Balkwill, D. L., G. R. Drake, R. H. Reeves, J. K. Fredrickson, D. C. White, D. B. Ringelberg, et al. 1997. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int. J. Syst. Bacteriol. 47: 191-201.   DOI
5 Buck, J. D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993.
6 An, D. S., C. H. Cui, H. G. Lee, L. Wang, S. C. Kim, S. T. Lee, et al. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76: 5827-5836.   DOI   ScienceOn
7 Cappuccino, J. G. and N. Sherman. 2002. Microbiology: A Laboratory Manual, 6th Ed. Pearson Education, Inc., California.
8 Christensen, L. P. 2009. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1-99.
9 Hong, H., C. H. Cui, J. K. Kim, F. X. Jin, S. C. Kim, and W. T. Im. 2012. Enzymatic biotransformation of ginsenoside $Rb_1$ and gypenoside XVII into ginsenosides Rd and $F_2$ by recombinant $\beta$-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418-424.   DOI   ScienceOn
10 Kim, J. K., C. H. Cui, M. H. Yoon, S. C. Kim, and W. T. Im. 2012. Bioconversion of major ginsenosides $Rg_1$ to minor ginsenoside $F_1$ using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J. Biotechnol. 161: 294-301.   DOI   ScienceOn
11 Im, W. T., S. Y. Kim, Q. M. Liu, J. E. Yang, S. T. Lee, and T. H. Yi. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48: 623-628.   DOI
12 Jin, F., H. Yu, Y. Fu, D. S. An, W. T. Im, S. T. Lee, and J. A. Teixeira da Silva. 2012. Biotransformation of ginsenosides (Ginseng saponins). Int. J. Biomed. Pharm. Sci. 6: 33-44.
13 Kampfer, P., C. C. Young, H. J. Busse, S. Y. Lin, P. D. Rekha, A. B. Arun, et al. 2011. Novosphingobium soli sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61: 259-263.   DOI   ScienceOn
14 Kim, S. K. and J. H. Park. 2011. Trends in ginseng research in 2010. J. Ginseng Res. 35: 389-398.   DOI   ScienceOn
15 Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
16 Lee, J. H., J. Y. Ahn, T. J. Shin, S. H. Choi, B. H. Lee, S. H. Hwang, et al. 2011. Effects of minor ginsenosides, ginsenoside metabolites, and ginsenoside epimers on the growth of Caenorhabditis elegans. J. Ginseng. Res. 35: 375-383.   DOI   ScienceOn
17 Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167.   DOI
18 Qu, C. L., Y. P. Bai, X. Q. Jin, Y. T. Wang, K. Zhang, J. Y. You, and H. Q. Zhang. 2009. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem. 115: 340-346.   DOI   ScienceOn
19 Cui, C. H., T. E. Choi, H. Yu, F. Jin, S. T. Lee, S. C. Kim, and W. T. Im. 2011. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J. Microbiol. 49: 393-398.   DOI
20 Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.   DOI   ScienceOn
21 Fitch, W. M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416.   DOI   ScienceOn
22 Euzeby, J. P. 1997. List of bacterial names with standing in nomenclature: A folder available on the Internet. Int. J. Syst. Bacteriol. 47: 590-592.   DOI   ScienceOn
23 Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229.   DOI
24 Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.   DOI   ScienceOn
25 Gupta, S. K., D. Lal, and R. Lal. 2009. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 59: 156-161.   DOI   ScienceOn
26 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
27 Hiraishi, A., Y. Ueda, J. Ishihara, and T. Mori. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42: 457-469.   DOI   ScienceOn
28 Park, C. S., M. H. Yoo, K. H. Noh, and D. K. Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19.   DOI   ScienceOn
29 Minnikin, D. E., P. V. Patel, L. Alshamaony, and M. Goodfellow. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol. 27:104-117.   DOI
30 Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.). Current Protocols in Molecular Biology. Wiley, New York, USA
31 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
32 Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.
33 Shi, W., Y. T. Wang, J. Li, H. Q. Zhang, and L. Ding. 2007. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 102: 664-668.   DOI   ScienceOn
34 Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.   DOI   ScienceOn
35 Wang, L., D. S. An, S. G. Kim, F. X. Jin, S. C. Kim, S. T. Lee, and W. T. Im. 2012. Ramlibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity. J. Microbiol. Biotechnol. 22: 311-315.   DOI   ScienceOn
36 Takeuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51: 1405-1417.
37 Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.   DOI   ScienceOn
38 Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34: 99-119.   DOI
39 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI   ScienceOn
40 Wayne, L. G. 1988. International Committee on Systematic Bacteriology: Announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 268: 433-434.
41 Zhao, X., J. Wang, J. Li, L. Fu, J. Gao, X. Du, et al. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J. Ind. Microbiol. Biotechnol. 36: 721-726.   DOI   ScienceOn