DOI QR코드

DOI QR Code

Alpha-Amylase Immobilization on Epoxy Containing Thiol-Ene Photocurable Materials

  • Received : 2012.09.06
  • Accepted : 2012.10.02
  • Published : 2013.02.28

Abstract

Thiol-ene polymerization is a versatile tool for several applications. Here we report the preparation of epoxide groups containing thiol-ene photocurable polymeric support and the covalent immobilization of ${\alpha}$-amylase onto these polymeric materials. The morphology of the polymeric support was characterized by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) coupled with SEM was used to explore the chemical composition. The polymeric support and the immobilization of the enzyme were characterized by FTIR analysis. SEM-EDS and FTIR results showed that the enzyme was successfully covalently attached to the polymeric support. The immobilization efficiency and enzyme activity of ${\alpha}$-amylase were examined at various pH (5.0-8.0) and temperature ($30-80^{\circ}C$) values. The storage stability and reusability of immobilized ${\alpha}$-amylase were investigated. The immobilization yield was $276{\pm}1.6$ mg per gram of polymeric support. Enzyme assays demonstrated that the immobilized enzyme exhibited better thermostability than the free one. The storage stability and reusability were improved by the immobilization on this enzyme support. Free enzyme lost its activity completely within 15 days. On the other hand, the immobilized enzyme retained 86.7% of its activity after 30 days. These results confirm that ${\alpha}$-amylase was successfully immobilized and gained a more stable character compared with the free one.

Keywords

References

  1. Abrol, K., G. N. Qazi, and A. K. Ghos. 2007. Characterization of an anion-exchange porous polypropylene hollow fiber membrane for immobilization of ABL lipase. J. Biotechnol. 128: 838-848. https://doi.org/10.1016/j.jbiotec.2006.12.031
  2. Aimetti, A. A., A. J. Machen, and K. S. Anseth. 2009. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30: 6048- 6054. https://doi.org/10.1016/j.biomaterials.2009.07.043
  3. Aksoy, S., H. Tumturk, and N. Hasirci. 1998. Stability of α- amylase immobilized on poly (methyl methacrylate-acrylic acid) microspheres. J. Biotechnol. 60: 37-46. https://doi.org/10.1016/S0168-1656(97)00179-X
  4. Bayramo lu, G., M. Y lmaz, and M. Y. Arica. 2004. Immobilization of a thermostable α-amylase onto reactive membranes: Kinetics characterization and application to continuous starch hydrolysis. Food Chem. 84: 591-599. https://doi.org/10.1016/S0308-8146(03)00283-8
  5. Bayramoglu, G., A. Denizli, and M. Y. Arica. 2002. Membrane with incorporated hydrophobic ligand for hydrophobic interaction with proteins: Application to lipase adsorption. Polym. Int. 51: 966-972. https://doi.org/10.1002/pi.899
  6. Bernfield, P. 1951. Enzymes of starch degradation and synthesis. In F. F. Nord (ed.). Advances in Enzymology. Interscience Publication New York.
  7. Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of proteindye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  8. Cao, L. 2006. Carrier-bound Immobilized Enzymes: Principles, Application and Design, 1st Ed. Wiley-VCH, Weinheim.
  9. Cosulich, M. E., S. Russo, S. Pasquale, and A. Mariani. 2000. Performance evaluation of hyperbranched aramids as potential supports for protein immobilization. Polymer J. 41: 4951-4956. https://doi.org/10.1016/S0032-3861(99)00284-0
  10. Cramer, N. B. and C. N. Bowman. 2001. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. J. Polym. Sci. A Polym. Chem. 39: 3311- 3319. https://doi.org/10.1002/pola.1314
  11. El-Ghaffar, M. A. A. and M. S. Hashem. 2009. Immobilization of α-amylase onto chitosan and its amino acid condensation adducts. J. Appl. Polym. Sci. 112: 805-814. https://doi.org/10.1002/app.29292
  12. Gupta, N., B. F. Lin, L. M. Campos, M. D. Dimitriou, S. T. Hikita, N. D. Treat, et al. 2010. A versatile approach to highthroughput microarrays using thiol-ene chemistry. Nat. Chem. 2: 138-145. https://doi.org/10.1038/nchem.478
  13. Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan. 2003. Microbial $\alpha$-amylases: A biotechnological perspective. Process Biochem. 38: 1599-1616. https://doi.org/10.1016/S0032-9592(03)00053-0
  14. Hasirci, N., S. Aksoy, and H. Tumturk. 2006. Activation of poly(dimer acid-co-alkyl polyamine) particles for covalent immobilization of $\alpha$-amylase. React. Funct. Polym. 66: 1546- 1551. https://doi.org/10.1016/j.reactfunctpolym.2006.05.004
  15. Kahraman, M. V., G. Bayramoglu, N. Kayaman-Apohan, and A. Gungor. 2007. Alpha amylase immobilization on functionalized glass beads by covalent attachment. Food Chem. 104: 1385- 1392. https://doi.org/10.1016/j.foodchem.2007.01.054
  16. Kahraman, M. V., N. Kayaman-Apohan, A. Ogan, and A. Gungor. 2006. Soybean oil based resin: A new tool for improved immobilization of alpha-amylase. J. Appl. Polym. Sci. 100: 4757-4761. https://doi.org/10.1002/app.23263
  17. Kennedy, J. F. and M. Paterson. 1993. Application of cellulosic fast-flow column filters to protein immobilisation and recovery. Polym. Int. 32: 71-81. https://doi.org/10.1002/pi.4990320112
  18. Kirk, O., T. V. Borcher, and C. C. Fuglsang. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2
  19. Kvesitadze, G. I. and M. S. H. Dvali. 1982. Immobilization of mold and bacterial amylases on silica carriers. Biotechnol. Bioeng. 24: 1765-1772. https://doi.org/10.1002/bit.260240804
  20. Leng, H. L., G. M. Douglas, and A. H. Gordon. 2003. Hydrolysis of starch particles using immobilized barley $\alpha$- amylase. Biochem. Eng. J. 13: 53-62. https://doi.org/10.1016/S1369-703X(02)00101-8
  21. Lin, P. C., D. Weinrich, and H. Waldmann. 2010. Protein biochips: Oriented surface immobilization of proteins. Macromol. Chem. Phys. 211: 136-144. https://doi.org/10.1002/macp.200900539
  22. Martinek, K., A. M., Kilbanov, V. S. Goldmacher, and I. V. Berezin. 1977. The principles of enzyme stabilization. Biochim. Biophys. Acta 485: 1-12. https://doi.org/10.1016/0005-2744(77)90188-7
  23. Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  24. Niu, G., L. Song, H. Zhang, X. Cui, M. Kashima, Z. Yang, H. Cao, et al. 2010. Application of thiol-ene photopolymerization for injectable intraocular lenses: A preliminary study. Polym. Eng. Sci. 50: 174-182. https://doi.org/10.1002/pen.21465
  25. Park, D., S. Haam, K. Jang, I. S. Ahn, and W. S. Kim. 2005. Immobilization of starch converting enzymes on surface-modified carriers using single and coimmobilized systems: Properties and application to starch hydrolysis. Process Biochem. 40: 53-61. https://doi.org/10.1016/j.procbio.2003.11.039
  26. Polaina, J. and A. P. MacCabe. 2007. Industrial Enzymes - Structure, Function and Applications, 1th Ed. Springer, New York.
  27. Rydholm, A. E., C. N. Bowman, and K. S. Anseth. 2005. Degradable thiol-acrylate photopolymers: Polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 26: 4495-4506. https://doi.org/10.1016/j.biomaterials.2004.11.046
  28. Sakhukhan, R., S. K. Roy, and S. L. Chakrabarty. 1987. Immobilization of amylase on polystyrene cation exchange resin equilibrated with $AI^{3+}$ ions (IR-120 $AI^{3+}$). Enzyme Microb. Technol. 9: 550-552. https://doi.org/10.1016/0141-0229(87)90086-X
  29. Saville, B. A., M. Khavkine, G. Seetharam, B. Marandi, and Y. L. Zuo. 2004. Characterization and performance of immobilized amylase and cellulose. Appl. Biochem. Biotechnol. 113: 251-259 https://doi.org/10.1385/ABAB:113:1-3:251
  30. Sheldon, R. A. 2007. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 349: 1289-1307. https://doi.org/10.1002/adsc.200700082
  31. Tisher, W. and F. Wedekind. 1999. Immobilized enzymes: Methods and applications. Top. Curr. Chem. 200: 95-126. https://doi.org/10.1007/3-540-68116-7_4
  32. Tumturk, H., S. Aksoy, and N. Hasirci. 1999. Covalent immobilization of $\alpha$-amylase onto poly(methyl methacrylate - 2-hydroxyethyl methacrylate) microspheres and effect of $Ca^{2+}$ ions on the enzyme activity. Starke 51: 211-217. https://doi.org/10.1002/(SICI)1521-379X(199906)51:6<211::AID-STAR211>3.0.CO;2-Z
  33. Tumturk, H., S. Aksoy, and N. Hasirci. 2000. Covalent immobilization of $\alpha$-amylase onto poly(2-hydroxyethyl methacrylate) and poly(styerene-2-hydroxyethyl methacrylate) microspheres. Food Chem. 68: 259-266. https://doi.org/10.1016/S0308-8146(99)00184-3
  34. Turunc, O., M. V. Kahraman, Z. S. Akdemir, N. Kayaman- Apohan, and A. Gungor. 2009. Immobilization of $\alpha$-amylase onto cyclic carbonate bearing hybrid material. Food Chem. 112: 992-997. https://doi.org/10.1016/j.foodchem.2008.07.024
  35. Ulbrich, R., A. Schellenberger, and W. Damerav. 1986. Studies on the thermal inactivation of immobilized enzymes. Biotechnol. Bioeng. 28: 511-522. https://doi.org/10.1002/bit.260280407
  36. van der Maarel, M. J., B. van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the $\alpha$-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2

Cited by

  1. Immobilization of alpha‐amylase on aminated polyimide membrane: Preparation, characterization, and properties vol.66, pp.3, 2014, https://doi.org/10.1002/star.201300160
  2. Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21 vol.25, pp.7, 2015, https://doi.org/10.4014/jmb.1503.03023
  3. Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids vol.7, pp.33, 2015, https://doi.org/10.1021/acsami.5b05668
  4. Physical and Covalent Immobilization of Lipase onto Amine Groups Bearing Thiol-Ene Photocured Coatings vol.181, pp.3, 2013, https://doi.org/10.1007/s12010-016-2266-6
  5. Simple Preparation of Thiol–Ene Particles in Glycerol and Surface Functionalization by Thiol–Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCT‐FRP) vol.39, pp.2, 2018, https://doi.org/10.1002/marc.201700394
  6. Nonhydrolytic sol-gel synthesized oligosiloxane resin reinforced thiol-ene photocured coatings for the immobilization of acetylcholinesterase vol.91, pp.1, 2013, https://doi.org/10.1007/s10971-019-05006-2
  7. Improved Alkyl Glycoside Synthesis by trans‐Glycosylation through Tailored Microenvironments of Immobilized β‐Glucosidase vol.85, pp.1, 2013, https://doi.org/10.1002/cplu.201900680
  8. Immobilization of β‐1,4‐xylanase isolated from Bacillus licheniformis S3 vol.60, pp.7, 2013, https://doi.org/10.1002/jobm.202000077
  9. Optimizing the immobilization conditions of β‐galactosidase on UV‐cured epoxy‐based polymeric film using response surface methodology vol.45, pp.4, 2013, https://doi.org/10.1111/jfbc.13699
  10. Acetylene Dicarboxylic Acid Diallyl Ester: A Versatile Monomer for Thiol–Ene Photocured Networks vol.306, pp.11, 2013, https://doi.org/10.1002/mame.202100427