References
- Abrol, K., G. N. Qazi, and A. K. Ghos. 2007. Characterization of an anion-exchange porous polypropylene hollow fiber membrane for immobilization of ABL lipase. J. Biotechnol. 128: 838-848. https://doi.org/10.1016/j.jbiotec.2006.12.031
- Aimetti, A. A., A. J. Machen, and K. S. Anseth. 2009. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30: 6048- 6054. https://doi.org/10.1016/j.biomaterials.2009.07.043
- Aksoy, S., H. Tumturk, and N. Hasirci. 1998. Stability of α- amylase immobilized on poly (methyl methacrylate-acrylic acid) microspheres. J. Biotechnol. 60: 37-46. https://doi.org/10.1016/S0168-1656(97)00179-X
- Bayramo lu, G., M. Y lmaz, and M. Y. Arica. 2004. Immobilization of a thermostable α-amylase onto reactive membranes: Kinetics characterization and application to continuous starch hydrolysis. Food Chem. 84: 591-599. https://doi.org/10.1016/S0308-8146(03)00283-8
- Bayramoglu, G., A. Denizli, and M. Y. Arica. 2002. Membrane with incorporated hydrophobic ligand for hydrophobic interaction with proteins: Application to lipase adsorption. Polym. Int. 51: 966-972. https://doi.org/10.1002/pi.899
- Bernfield, P. 1951. Enzymes of starch degradation and synthesis. In F. F. Nord (ed.). Advances in Enzymology. Interscience Publication New York.
- Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of proteindye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Cao, L. 2006. Carrier-bound Immobilized Enzymes: Principles, Application and Design, 1st Ed. Wiley-VCH, Weinheim.
- Cosulich, M. E., S. Russo, S. Pasquale, and A. Mariani. 2000. Performance evaluation of hyperbranched aramids as potential supports for protein immobilization. Polymer J. 41: 4951-4956. https://doi.org/10.1016/S0032-3861(99)00284-0
- Cramer, N. B. and C. N. Bowman. 2001. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. J. Polym. Sci. A Polym. Chem. 39: 3311- 3319. https://doi.org/10.1002/pola.1314
- El-Ghaffar, M. A. A. and M. S. Hashem. 2009. Immobilization of α-amylase onto chitosan and its amino acid condensation adducts. J. Appl. Polym. Sci. 112: 805-814. https://doi.org/10.1002/app.29292
- Gupta, N., B. F. Lin, L. M. Campos, M. D. Dimitriou, S. T. Hikita, N. D. Treat, et al. 2010. A versatile approach to highthroughput microarrays using thiol-ene chemistry. Nat. Chem. 2: 138-145. https://doi.org/10.1038/nchem.478
-
Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan. 2003. Microbial
$\alpha$ -amylases: A biotechnological perspective. Process Biochem. 38: 1599-1616. https://doi.org/10.1016/S0032-9592(03)00053-0 -
Hasirci, N., S. Aksoy, and H. Tumturk. 2006. Activation of poly(dimer acid-co-alkyl polyamine) particles for covalent immobilization of
$\alpha$ -amylase. React. Funct. Polym. 66: 1546- 1551. https://doi.org/10.1016/j.reactfunctpolym.2006.05.004 - Kahraman, M. V., G. Bayramoglu, N. Kayaman-Apohan, and A. Gungor. 2007. Alpha amylase immobilization on functionalized glass beads by covalent attachment. Food Chem. 104: 1385- 1392. https://doi.org/10.1016/j.foodchem.2007.01.054
- Kahraman, M. V., N. Kayaman-Apohan, A. Ogan, and A. Gungor. 2006. Soybean oil based resin: A new tool for improved immobilization of alpha-amylase. J. Appl. Polym. Sci. 100: 4757-4761. https://doi.org/10.1002/app.23263
- Kennedy, J. F. and M. Paterson. 1993. Application of cellulosic fast-flow column filters to protein immobilisation and recovery. Polym. Int. 32: 71-81. https://doi.org/10.1002/pi.4990320112
- Kirk, O., T. V. Borcher, and C. C. Fuglsang. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2
- Kvesitadze, G. I. and M. S. H. Dvali. 1982. Immobilization of mold and bacterial amylases on silica carriers. Biotechnol. Bioeng. 24: 1765-1772. https://doi.org/10.1002/bit.260240804
-
Leng, H. L., G. M. Douglas, and A. H. Gordon. 2003. Hydrolysis of starch particles using immobilized barley
$\alpha$ - amylase. Biochem. Eng. J. 13: 53-62. https://doi.org/10.1016/S1369-703X(02)00101-8 - Lin, P. C., D. Weinrich, and H. Waldmann. 2010. Protein biochips: Oriented surface immobilization of proteins. Macromol. Chem. Phys. 211: 136-144. https://doi.org/10.1002/macp.200900539
- Martinek, K., A. M., Kilbanov, V. S. Goldmacher, and I. V. Berezin. 1977. The principles of enzyme stabilization. Biochim. Biophys. Acta 485: 1-12. https://doi.org/10.1016/0005-2744(77)90188-7
- Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
- Niu, G., L. Song, H. Zhang, X. Cui, M. Kashima, Z. Yang, H. Cao, et al. 2010. Application of thiol-ene photopolymerization for injectable intraocular lenses: A preliminary study. Polym. Eng. Sci. 50: 174-182. https://doi.org/10.1002/pen.21465
- Park, D., S. Haam, K. Jang, I. S. Ahn, and W. S. Kim. 2005. Immobilization of starch converting enzymes on surface-modified carriers using single and coimmobilized systems: Properties and application to starch hydrolysis. Process Biochem. 40: 53-61. https://doi.org/10.1016/j.procbio.2003.11.039
- Polaina, J. and A. P. MacCabe. 2007. Industrial Enzymes - Structure, Function and Applications, 1th Ed. Springer, New York.
- Rydholm, A. E., C. N. Bowman, and K. S. Anseth. 2005. Degradable thiol-acrylate photopolymers: Polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 26: 4495-4506. https://doi.org/10.1016/j.biomaterials.2004.11.046
-
Sakhukhan, R., S. K. Roy, and S. L. Chakrabarty. 1987. Immobilization of amylase on polystyrene cation exchange resin equilibrated with
$AI^{3+}$ ions (IR-120$AI^{3+}$ ). Enzyme Microb. Technol. 9: 550-552. https://doi.org/10.1016/0141-0229(87)90086-X - Saville, B. A., M. Khavkine, G. Seetharam, B. Marandi, and Y. L. Zuo. 2004. Characterization and performance of immobilized amylase and cellulose. Appl. Biochem. Biotechnol. 113: 251-259 https://doi.org/10.1385/ABAB:113:1-3:251
- Sheldon, R. A. 2007. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 349: 1289-1307. https://doi.org/10.1002/adsc.200700082
- Tisher, W. and F. Wedekind. 1999. Immobilized enzymes: Methods and applications. Top. Curr. Chem. 200: 95-126. https://doi.org/10.1007/3-540-68116-7_4
-
Tumturk, H., S. Aksoy, and N. Hasirci. 1999. Covalent immobilization of
$\alpha$ -amylase onto poly(methyl methacrylate - 2-hydroxyethyl methacrylate) microspheres and effect of$Ca^{2+}$ ions on the enzyme activity. Starke 51: 211-217. https://doi.org/10.1002/(SICI)1521-379X(199906)51:6<211::AID-STAR211>3.0.CO;2-Z -
Tumturk, H., S. Aksoy, and N. Hasirci. 2000. Covalent immobilization of
$\alpha$ -amylase onto poly(2-hydroxyethyl methacrylate) and poly(styerene-2-hydroxyethyl methacrylate) microspheres. Food Chem. 68: 259-266. https://doi.org/10.1016/S0308-8146(99)00184-3 -
Turunc, O., M. V. Kahraman, Z. S. Akdemir, N. Kayaman- Apohan, and A. Gungor. 2009. Immobilization of
$\alpha$ -amylase onto cyclic carbonate bearing hybrid material. Food Chem. 112: 992-997. https://doi.org/10.1016/j.foodchem.2008.07.024 - Ulbrich, R., A. Schellenberger, and W. Damerav. 1986. Studies on the thermal inactivation of immobilized enzymes. Biotechnol. Bioeng. 28: 511-522. https://doi.org/10.1002/bit.260280407
-
van der Maarel, M. J., B. van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the
$\alpha$ -amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
Cited by
- Immobilization of alpha‐amylase on aminated polyimide membrane: Preparation, characterization, and properties vol.66, pp.3, 2014, https://doi.org/10.1002/star.201300160
- Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21 vol.25, pp.7, 2015, https://doi.org/10.4014/jmb.1503.03023
- Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids vol.7, pp.33, 2015, https://doi.org/10.1021/acsami.5b05668
- Physical and Covalent Immobilization of Lipase onto Amine Groups Bearing Thiol-Ene Photocured Coatings vol.181, pp.3, 2013, https://doi.org/10.1007/s12010-016-2266-6
- Simple Preparation of Thiol–Ene Particles in Glycerol and Surface Functionalization by Thiol–Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCT‐FRP) vol.39, pp.2, 2018, https://doi.org/10.1002/marc.201700394
- Nonhydrolytic sol-gel synthesized oligosiloxane resin reinforced thiol-ene photocured coatings for the immobilization of acetylcholinesterase vol.91, pp.1, 2013, https://doi.org/10.1007/s10971-019-05006-2
- Improved Alkyl Glycoside Synthesis by trans‐Glycosylation through Tailored Microenvironments of Immobilized β‐Glucosidase vol.85, pp.1, 2013, https://doi.org/10.1002/cplu.201900680
- Immobilization of β‐1,4‐xylanase isolated from Bacillus licheniformis S3 vol.60, pp.7, 2013, https://doi.org/10.1002/jobm.202000077
- Optimizing the immobilization conditions of β‐galactosidase on UV‐cured epoxy‐based polymeric film using response surface methodology vol.45, pp.4, 2013, https://doi.org/10.1111/jfbc.13699
- Acetylene Dicarboxylic Acid Diallyl Ester: A Versatile Monomer for Thiol–Ene Photocured Networks vol.306, pp.11, 2013, https://doi.org/10.1002/mame.202100427