DOI QR코드

DOI QR Code

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong (School of Biotechnology and Biomolecular Sciences, The University of New South Wales) ;
  • Hauer, Bernhard (Institute of Technical Biochemistry, University of Stuttgart) ;
  • Rosche, Bettina (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
  • Received : 2012.07.26
  • Accepted : 2012.10.01
  • Published : 2013.02.28

Abstract

While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

Keywords

References

  1. Battista, J. and U. Bohm. 2003. Mass transfer in trickle-bed reactors with structured packing. Chem. Eng. Technol. 26: 1061-1067. https://doi.org/10.1002/ceat.200301739
  2. Breijer, A. A. J., J. Nijenhuis, and R. van Ommen. 2008. Prevention of flooding in a countercurrent trickle-bed reactor using additional void space. Chem. Eng. J. 138: 333-340. https://doi.org/10.1016/j.cej.2007.06.014
  3. Cho, H. Y., A. E. Yousef, and S. T. Yang. 1996. Continuous production of pediocin by immobilized Pediococcus acidilactici P02 in a packed-bed bioreactor. Appl. Microbiol. Biotechnol. 45: 589-594. https://doi.org/10.1007/s002530050734
  4. Conlon, K. M., H. Humphreys, and J. P. O'Gara. 2004. Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J. Bacteriol. 186: 6208-6219. https://doi.org/10.1128/JB.186.18.6208-6219.2004
  5. Crueger, W. and A. Crueger. 1990. Acetic acids, pp. 134-147. In T. D. Brock (ed.). Biotechnology: A Textbook of Industrial Microbiology. Science Tech. Publishers, Sunderland, MA, USA.
  6. Drenkard, E. and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740-743. https://doi.org/10.1038/416740a
  7. Frank, H. J. W., J. A. M. Kuipers, G. F. Versteeg, and W. P. M. Van Swaaij. 1999. The performance of structured packings in trickle-bed reactors. Chem. Eng. Res. Des. 77: 567-582. https://doi.org/10.1205/026387699526566
  8. Gross, R., B. Hauer, K. Otto, and A. Schmid. 2007. Microbial biofilms: New catalysts for maximizing productivity of longterm biotransformations. Biotechnol. Bioeng. 98: 1123-1134. https://doi.org/10.1002/bit.21547
  9. Gross, R., K. Lang, K. Buhler, and A. Schmid. 2010. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol. Bioeng. 105: 705-717.
  10. Halan, B., A. Schmid, and K. Buchler. 2010. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol. Bioeng. 106: 516-527. https://doi.org/10.1002/bit.22732
  11. Halan, B., A. Schmid, and K. Buehler. 2011. Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120 Delta C catalytic biofilms. Appl. Environ. Microbiol. 77: 1563-1571. https://doi.org/10.1128/AEM.02498-10
  12. Hekmat, D., R. Bauer, and J. Fricke. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116. https://doi.org/10.1007/s00449-003-0338-9
  13. Hekmat, D., R. Bauer, and V. Neff. 2007. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 42: 71-76. https://doi.org/10.1016/j.procbio.2006.07.026
  14. Hekmat, D., A. Feuchtinger, M. Stephan, and D. Vortmeyer. 2004. Biofilm population dynamics in a trickle-bed bioreactor used for the biodegradation of aromatic hydrocarbons from waste gas under transient conditions. Biodegradation 15: 133-144 https://doi.org/10.1023/B:BIOD.0000015647.21321.df
  15. Hickey, R., R. Datta, S. P. Tsai, and R. Basu. 2008. Membrane supported bioreactor for conversion of syngas components to liquid products. US patent US20080305539.
  16. Iliuta, I. and F. Larachi. 2004. Biomass accumulation and clogging in trickle-bed bioreactors. AlChE J. 50: 2541-2551. https://doi.org/10.1002/aic.10201
  17. Kataoka, M., M. Sasaki, A. Hidalgo, M. Nakano, and S. Shimizu. 2001. Glycolic acid production using ethylene glycoloxidizing microorganisms. Biosci. Biotechnol. Biochem. 65: 2265-2270. https://doi.org/10.1271/bbb.65.2265
  18. Koh, K. S., K. W. Lam, M. Alhede, S. Y. Queck, M. Labbate, S. Kjelleberg, and S. A. Rice. 2007. Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J. Bacteriol. 189: 119-130. https://doi.org/10.1128/JB.00930-06
  19. Kreutzer, M. T., F. Kapteijn, and J. A. Moulijn. 2006. Shouldn't catalysts shape up? Structured reactors in general and gas-liquid monolith reactors in particular. Catal. Today 111: 111-118. https://doi.org/10.1016/j.cattod.2005.10.014
  20. Lane, D. J. 1991. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, pp. 133. In E. Stackebrandt and M. Goodfellow (eds.). Modern Microbiological Methods. John Wiley & Sons, Chichester, UK.
  21. Lazarova, V. and J. Manem. 2000. Innovative biofilm treatment technologies for water and wastewater treatment, pp. 159-206. In J. D. Bryers (ed.). Biofilm II: Process Analysis and Applications. Wiley-Liss Press, New York.
  22. Lewis, V. P. and S. T. Yang. 1992. Continuous propionic-acid fermentation by immobilized Propionibacterium-Acidipropionici in a novel packed-bed bioreactor. Biotechnol. Bioeng. 40: 465-474 https://doi.org/10.1002/bit.260400404
  23. Li, X. Z., B. Hauer, and B. Rosche. 2007. Single-species microbial biofilm screening for industrial applications. Appl. Microbiol. Biotechnol. 76: 1255-1262. https://doi.org/10.1007/s00253-007-1108-4
  24. Li, X. Z., J. Klebensberger, and B. Rosche. 2010. Effect of gcl, glcB, and aceA disruption on glyoxylate conversion by Pseudomonas putida JM37. J. Microbiol. Biotechnol. 20: 1006-1010. https://doi.org/10.4014/jmb.0912.12005
  25. Li, X. Z., J. S. Webb, S. Kjelleberg, and B. Rosche. 2006. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. Appl. Environ. Microbiol. 72: 1639-1644. https://doi.org/10.1128/AEM.72.2.1639-1644.2006
  26. Liu, X., Y. K. Chung, S. T. Yang, and A. E. Yousef. 2005. Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem. 40: 13-24. https://doi.org/10.1016/j.procbio.2003.11.032
  27. Matz, C., D. McDougald, A. M. Moreno, P. Y. Yung, F. H. Yildiz, and S. Kjelleberg. 2005. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 102: 16819-16824. https://doi.org/10.1073/pnas.0505350102
  28. Mears, D. E. 1974. The role of liquid holdup and effective wetting in performance of trickle-bed reactors. Adv. Chem. Ser. 133: 218-228.
  29. Nicolella, C., M. C. M. van Loosdrecht, and S. J. Heijnen. 2000. Particle-based biofilm reactor technology. Trends Biotechnol. 18: 312-320. https://doi.org/10.1016/S0167-7799(00)01461-X
  30. Nigam, K. D. P. and A. Kundu. 2005. Hydrodynamics of trickle-bed reactors. In S. Lee (ed.). Encyclopedia of Chemical Processing. Taylor & Francis, London.
  31. Pangarkar, K., T. J. Schildhauer, J. R. van Ommen, J. Nijenhuis, F. Kapteijn, and J. A. Moulijn. 2008. Structured packings for multiphase catalytic reactors. Ind. Eng. Chem. Res. 47: 3720-3751. https://doi.org/10.1021/ie800067r
  32. Qureshi, N., B. A. Annous, T. C. Ezeji, P. Karcher, and I. S. Maddox. 2005. Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microb. Cell Fact. 4: 24. https://doi.org/10.1186/1475-2859-4-24
  33. Rosche, B., X. Z. Li, B. Hauer, A. Schmid, and K. Buehler. 2009. Microbial biofilms: A concept for industrial catalysis? Trends Biotechnol. 27: 636-643. https://doi.org/10.1016/j.tibtech.2009.08.001
  34. Ryhiner, G., B. Birou, and H. Gros. 1992. The use of submerged structured packings in biofilm reactors for wastewater treatment. Water Sci. Technol. 26: 723-731.
  35. Satterfield, C. N. 1975. Trickle-bed reactors. AlChE J. 21: 209-228 https://doi.org/10.1002/aic.690210202
  36. Segers, P., M. Vancanneyt, B. Pot, U. Torck, B. Hoste, D. Dewettinck, et al. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol. 44: 499-510. https://doi.org/10.1099/00207713-44-3-499
  37. Spiegel, L. and W. Meier. 2003. Distillation columns with structured packings in the next decade. Chem. Eng. Res. Des. 81: 39-47. https://doi.org/10.1205/026387603321158177
  38. Stewart, P. S. and M. J. Franklin. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6: 199-210. https://doi.org/10.1038/nrmicro1838
  39. Sutherland, I. W. 2001. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology 147: 3-9. https://doi.org/10.1099/00221287-147-1-3
  40. Tirado-Acevedo, O., M. S. Chinn, and A. M. Grunden. 2010. Production of biofuels from synthesis gas using microbial Aatalysts, pp. 57-92. Advances in Applied Microbiology, Vol.70. Elsevier Academic Press Inc, San Diego.
  41. Wei, G., X. Yang, W. Zhou, J. Lin, and D. Wei. 2009. Adsorptive bioconversion of ethylene glycol to glycolic acid by Gluconobacter oxydans DSM 2003. Biochem. Eng. J. 47: 127-131 https://doi.org/10.1016/j.bej.2009.07.016
  42. Werner, E., F. Roe, A. Bugnicourt, M. J. Franklin, A. Heydorn, S. Molin, B. Pitts, and P. S. Stewart. 2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 70: 6188-6196. https://doi.org/10.1128/AEM.70.10.6188-6196.2004
  43. Weuster-Botz, D., A. Aivasidis, and C. Wandrey. 1993. Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II: Process development for the fermentation of hydrolysed B-starch without sterilization. Appl. Microbiol. Biotechnol. 39: 685-690. https://doi.org/10.1007/BF00164450
  44. Xu, K. D., P. S. Stewart, F. Xia, C. T. Huang, and G. A. McFeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64: 4035-4039.

Cited by

  1. Biotechnologie und Bioverfahrenstechnik – Vom ersten Ullmanns Artikel bis hin zu aktuellen Forschungsthemen vol.86, pp.12, 2014, https://doi.org/10.1002/cite.201400083
  2. Biotechnology and Bioprocess Engineering - From the First Ullmann's Article to Recent Trends vol.2, pp.3, 2013, https://doi.org/10.1002/cben.201500008
  3. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae vol.99, pp.15, 2013, https://doi.org/10.1007/s00253-015-6608-z
  4. Bed Expansion and Particle Classification in?Liquid Fluidized Beds with Structured Internals vol.38, pp.3, 2013, https://doi.org/10.1002/ceat.201400463
  5. Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength vol.16, pp.24, 2013, https://doi.org/10.1039/c6lc01101b
  6. A video imaging method for time-dependent measurements of molecular mass transfer and biofilm dynamics in microchannels vol.1, pp.29, 2013, https://doi.org/10.1557/adv.2016.359
  7. Analyzing the influence of microstructured surfaces on the lactic acid production of Lactobacillus delbrueckii lactis in a flow‐through cell system vol.17, pp.8, 2017, https://doi.org/10.1002/elsc.201700045
  8. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria vol.10, pp.38, 2013, https://doi.org/10.1021/acsami.8b07245
  9. Microfluidic bioanalytical flow cells for biofilm studies: a review vol.144, pp.1, 2013, https://doi.org/10.1039/c8an01526k
  10. Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan vol.12, pp.23, 2019, https://doi.org/10.1002/cssc.201902413
  11. Growth Dynamics of Bacterial Populations in a Two-Compartment Biofilm Bioreactor Designed for Continuous Surfactin Biosynthesis vol.8, pp.5, 2013, https://doi.org/10.3390/microorganisms8050679