References
- Chae, Y. K. and J. L. Markley. 2000. Functional recombinant rabbit muscle phosphoglucomutase from Escherichia coli. Protein Expr. Purif. 20: 124-127. https://doi.org/10.1006/prep.2000.1288
- Corma, A., S. Iborra, and A. Velty. 2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107: 2411-2502. https://doi.org/10.1021/cr050989d
- Fink, D., N. Weissschuh, J. Reuther, W. Wohlleben, and A. Engels. 2002. Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 46: 331-347. https://doi.org/10.1046/j.1365-2958.2002.03150.x
- Goodchild, J. A. and C. V. Givan. 1990. Influence of ammonium and extracellular pH on the amino and organic acid contents of suspension culture cells of Acer pseudoplatanus. Physiol. Plant 78: 29-37. https://doi.org/10.1111/j.1399-3054.1990.tb08710.x
- Guettler, M. V. and M. Jain. 1996. Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants. US patent 5,521,075.
- Guettler, M. V., D. Rumler, and M. K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207-216. https://doi.org/10.1099/00207713-49-1-207
- Hachiya, T., C. K. Watanabe, M. Fujimoto, T. Ishikawa, K. Takahara, M. Kawai-Yamada, et al. 2012. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant Cell Physiol. 53: 577-591. https://doi.org/10.1093/pcp/pcs012
- Inui, M., S. Murakami, S. Okino, H. Kawaguchi, A. A. Vertes, and H. Yukawa. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196. https://doi.org/10.1159/000079827
- Inui, M., M. Suda, S. Kimura, K. Yasuda, H. Suzuki, H. Toda, et al. 2008. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77: 1305-1316. https://doi.org/10.1007/s00253-007-1257-5
- Jantama, K., X. Zhang, J. C. Moore, K. T. Shanmugam, S. A. Svoronos, and L. O. Ingram. 2008. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101: 881-893. https://doi.org/10.1002/bit.22005
- Krause, J. P., T. Polen, J. W. Youn, D. Emer, B. J. Eikmanns, and V. F. Wendisch. 2012. Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum. J. Biotechnol. 159: 204-215. https://doi.org/10.1016/j.jbiotec.2012.01.003
- Kurzrock, T. and D. Weuster-Botz. 2010. Recovery of succinic acid from fermentation broth. Biotechnol. Lett. 32: 331-339. https://doi.org/10.1007/s10529-009-0163-6
- Lee, K., H. S. Joo, Y. H. Yang, E. Song, and B. G. Kim. 2006. Proteomics for Streptomyces: "Industrial proteomics" for antibiotics. J. Microbiol. Biotechnol. 16: 331-348.
- Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668. https://doi.org/10.1007/s00253-002-0935-6
- Litsanov, B., M. Brocker, and M. Bott. 2012. Toward homosuccinate fermentation: Metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl. Environ. Microbiol. 78: 3325-3337. https://doi.org/10.1128/AEM.07790-11
- Ma, F. X., J. H. Kim, S. B. Kim, Y. G. Seo, Y. K. Chang, S. K. Hong, and C. J. Kim. 2008. Medium optimization for enhanced production of rifamycin B by Amycolatopsis mediterranei S699: Combining a full factorial design and a statistical approach. Process Biochem. 43: 954-960. https://doi.org/10.1016/j.procbio.2008.04.021
- Oh, I. J., D. H. Kim, E. K. Oh, S. Y. Lee, and J. Lee. 2009. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 19: 167-171. https://doi.org/10.4014/jmb.0807.447
- Okino, S., M. Inui, and H. Yukawa. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480. https://doi.org/10.1007/s00253-005-1900-y
- Okino, S., R. Noburyu, M. Suda, T. Jojima, M. Inui, and H. Yukawa. 2008. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81: 459-464. https://doi.org/10.1007/s00253-008-1668-y
- Song, H., Y. S. Huh, S. Y. Lee, W. H. Hong, and Y. K. Hong. 2007. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. J. Biotechnol. 132: 445-452. https://doi.org/10.1016/j.jbiotec.2007.07.496
- Yu, P., Y. A. Yan, and Y. P. Tang. 2011. Medium optimization for endochitinase production by recombinant Pichia pastoris ZJGSU02 using response surface methodology. Afr. J. Biotechnol. 10: 75-84.
Cited by
- Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/723412
- Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology vol.24, pp.10, 2013, https://doi.org/10.4014/jmb.1403.03024
- A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose vol.48, pp.11, 2013, https://doi.org/10.1007/s00726-016-2272-6
- Efficient malic acid production from glycerol with Ustilago trichophora TZ1 vol.9, pp.None, 2013, https://doi.org/10.1186/s13068-016-0483-4
- Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal vol.7, pp.8, 2013, https://doi.org/10.3390/app7080756
- Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1 vol.10, pp.None, 2013, https://doi.org/10.1186/s13068-017-0809-x
- Media optimization for economic succinic acid production by Enterobacter sp. LU1. vol.7, pp.1, 2013, https://doi.org/10.1186/s13568-017-0423-0
- A Hierarchically Modified Graphite Cathode with Au Nanoislands, Cysteamine, and Au Nanocolloids for Increased Electricity-Assisted Production of Isobutanol by Engineered Shewanella oneidensis MR-1 vol.9, pp.50, 2013, https://doi.org/10.1021/acsami.7b09874
- Tuning of the Carbon-to-Nitrogen Ratio for the Production of l-Arginine by Escherichia coli vol.3, pp.4, 2013, https://doi.org/10.3390/fermentation3040060
- Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.02058
- Molecular Identification of Bacterial Strains Producing Succinic Acid from Indian Sources vol.12, pp.4, 2013, https://doi.org/10.22207/jpam.12.4.73
- Optimization of fermentation medium for succinic acid production using Basfia succiniciproducens vol.24, pp.None, 2013, https://doi.org/10.1016/j.eti.2021.101914
- Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid vol.20, pp.1, 2013, https://doi.org/10.1186/s12934-021-01647-7