Browse > Article
http://dx.doi.org/10.4014/jmb.1209.09017

Alpha-Amylase Immobilization on Epoxy Containing Thiol-Ene Photocurable Materials  

Cakmakci, Emrah (Marmara University, Department of Chemistry)
Danis, Ozkan (Marmara University, Department of Chemistry)
Demir, Serap (Marmara University, Department of Chemistry)
Mulazim, Yusuf (Marmara University, Department of Chemistry)
Kahraman, Memet Vezir (Marmara University, Department of Chemistry)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.2, 2013 , pp. 205-210 More about this Journal
Abstract
Thiol-ene polymerization is a versatile tool for several applications. Here we report the preparation of epoxide groups containing thiol-ene photocurable polymeric support and the covalent immobilization of ${\alpha}$-amylase onto these polymeric materials. The morphology of the polymeric support was characterized by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) coupled with SEM was used to explore the chemical composition. The polymeric support and the immobilization of the enzyme were characterized by FTIR analysis. SEM-EDS and FTIR results showed that the enzyme was successfully covalently attached to the polymeric support. The immobilization efficiency and enzyme activity of ${\alpha}$-amylase were examined at various pH (5.0-8.0) and temperature ($30-80^{\circ}C$) values. The storage stability and reusability of immobilized ${\alpha}$-amylase were investigated. The immobilization yield was $276{\pm}1.6$ mg per gram of polymeric support. Enzyme assays demonstrated that the immobilized enzyme exhibited better thermostability than the free one. The storage stability and reusability were improved by the immobilization on this enzyme support. Free enzyme lost its activity completely within 15 days. On the other hand, the immobilized enzyme retained 86.7% of its activity after 30 days. These results confirm that ${\alpha}$-amylase was successfully immobilized and gained a more stable character compared with the free one.
Keywords
Thiol-ene polymerization; enzyme immobilization; alpha-amylase; UV curing; epoxide functionality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abrol, K., G. N. Qazi, and A. K. Ghos. 2007. Characterization of an anion-exchange porous polypropylene hollow fiber membrane for immobilization of ABL lipase. J. Biotechnol. 128: 838-848.   DOI   ScienceOn
2 Aimetti, A. A., A. J. Machen, and K. S. Anseth. 2009. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30: 6048- 6054.   DOI   ScienceOn
3 Bernfield, P. 1951. Enzymes of starch degradation and synthesis. In F. F. Nord (ed.). Advances in Enzymology. Interscience Publication New York.
4 Aksoy, S., H. Tumturk, and N. Hasirci. 1998. Stability of α- amylase immobilized on poly (methyl methacrylate-acrylic acid) microspheres. J. Biotechnol. 60: 37-46.   DOI   ScienceOn
5 Bayramo lu, G., M. Y lmaz, and M. Y. Arica. 2004. Immobilization of a thermostable α-amylase onto reactive membranes: Kinetics characterization and application to continuous starch hydrolysis. Food Chem. 84: 591-599.   DOI   ScienceOn
6 Bayramoglu, G., A. Denizli, and M. Y. Arica. 2002. Membrane with incorporated hydrophobic ligand for hydrophobic interaction with proteins: Application to lipase adsorption. Polym. Int. 51: 966-972.   DOI   ScienceOn
7 Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of proteindye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
8 Cao, L. 2006. Carrier-bound Immobilized Enzymes: Principles, Application and Design, 1st Ed. Wiley-VCH, Weinheim.
9 Cosulich, M. E., S. Russo, S. Pasquale, and A. Mariani. 2000. Performance evaluation of hyperbranched aramids as potential supports for protein immobilization. Polymer J. 41: 4951-4956.   DOI   ScienceOn
10 Cramer, N. B. and C. N. Bowman. 2001. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. J. Polym. Sci. A Polym. Chem. 39: 3311- 3319.   DOI   ScienceOn
11 El-Ghaffar, M. A. A. and M. S. Hashem. 2009. Immobilization of α-amylase onto chitosan and its amino acid condensation adducts. J. Appl. Polym. Sci. 112: 805-814.   DOI   ScienceOn
12 Kahraman, M. V., G. Bayramoglu, N. Kayaman-Apohan, and A. Gungor. 2007. Alpha amylase immobilization on functionalized glass beads by covalent attachment. Food Chem. 104: 1385- 1392.   DOI   ScienceOn
13 Gupta, N., B. F. Lin, L. M. Campos, M. D. Dimitriou, S. T. Hikita, N. D. Treat, et al. 2010. A versatile approach to highthroughput microarrays using thiol-ene chemistry. Nat. Chem. 2: 138-145.   DOI   ScienceOn
14 Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan. 2003. Microbial $\alpha$-amylases: A biotechnological perspective. Process Biochem. 38: 1599-1616.   DOI   ScienceOn
15 Hasirci, N., S. Aksoy, and H. Tumturk. 2006. Activation of poly(dimer acid-co-alkyl polyamine) particles for covalent immobilization of $\alpha$-amylase. React. Funct. Polym. 66: 1546- 1551.   DOI   ScienceOn
16 Kahraman, M. V., N. Kayaman-Apohan, A. Ogan, and A. Gungor. 2006. Soybean oil based resin: A new tool for improved immobilization of alpha-amylase. J. Appl. Polym. Sci. 100: 4757-4761.   DOI   ScienceOn
17 Kennedy, J. F. and M. Paterson. 1993. Application of cellulosic fast-flow column filters to protein immobilisation and recovery. Polym. Int. 32: 71-81.   DOI   ScienceOn
18 Kirk, O., T. V. Borcher, and C. C. Fuglsang. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345-351.   DOI   ScienceOn
19 Kvesitadze, G. I. and M. S. H. Dvali. 1982. Immobilization of mold and bacterial amylases on silica carriers. Biotechnol. Bioeng. 24: 1765-1772.   DOI   ScienceOn
20 Leng, H. L., G. M. Douglas, and A. H. Gordon. 2003. Hydrolysis of starch particles using immobilized barley $\alpha$- amylase. Biochem. Eng. J. 13: 53-62.   DOI   ScienceOn
21 Niu, G., L. Song, H. Zhang, X. Cui, M. Kashima, Z. Yang, H. Cao, et al. 2010. Application of thiol-ene photopolymerization for injectable intraocular lenses: A preliminary study. Polym. Eng. Sci. 50: 174-182.   DOI   ScienceOn
22 Park, D., S. Haam, K. Jang, I. S. Ahn, and W. S. Kim. 2005. Immobilization of starch converting enzymes on surface-modified carriers using single and coimmobilized systems: Properties and application to starch hydrolysis. Process Biochem. 40: 53-61.   DOI   ScienceOn
23 Lin, P. C., D. Weinrich, and H. Waldmann. 2010. Protein biochips: Oriented surface immobilization of proteins. Macromol. Chem. Phys. 211: 136-144.   DOI   ScienceOn
24 Martinek, K., A. M., Kilbanov, V. S. Goldmacher, and I. V. Berezin. 1977. The principles of enzyme stabilization. Biochim. Biophys. Acta 485: 1-12.   DOI   ScienceOn
25 Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463.   DOI   ScienceOn
26 Polaina, J. and A. P. MacCabe. 2007. Industrial Enzymes - Structure, Function and Applications, 1th Ed. Springer, New York.
27 Rydholm, A. E., C. N. Bowman, and K. S. Anseth. 2005. Degradable thiol-acrylate photopolymers: Polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 26: 4495-4506.   DOI   ScienceOn
28 Sakhukhan, R., S. K. Roy, and S. L. Chakrabarty. 1987. Immobilization of amylase on polystyrene cation exchange resin equilibrated with $AI^{3+}$ ions (IR-120 $AI^{3+}$). Enzyme Microb. Technol. 9: 550-552.   DOI   ScienceOn
29 Tumturk, H., S. Aksoy, and N. Hasirci. 1999. Covalent immobilization of $\alpha$-amylase onto poly(methyl methacrylate - 2-hydroxyethyl methacrylate) microspheres and effect of $Ca^{2+}$ ions on the enzyme activity. Starke 51: 211-217.   DOI
30 Saville, B. A., M. Khavkine, G. Seetharam, B. Marandi, and Y. L. Zuo. 2004. Characterization and performance of immobilized amylase and cellulose. Appl. Biochem. Biotechnol. 113: 251-259   DOI   ScienceOn
31 Sheldon, R. A. 2007. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 349: 1289-1307.   DOI   ScienceOn
32 Ulbrich, R., A. Schellenberger, and W. Damerav. 1986. Studies on the thermal inactivation of immobilized enzymes. Biotechnol. Bioeng. 28: 511-522.   DOI   ScienceOn
33 Tisher, W. and F. Wedekind. 1999. Immobilized enzymes: Methods and applications. Top. Curr. Chem. 200: 95-126.   DOI
34 Tumturk, H., S. Aksoy, and N. Hasirci. 2000. Covalent immobilization of $\alpha$-amylase onto poly(2-hydroxyethyl methacrylate) and poly(styerene-2-hydroxyethyl methacrylate) microspheres. Food Chem. 68: 259-266.   DOI   ScienceOn
35 Turunc, O., M. V. Kahraman, Z. S. Akdemir, N. Kayaman- Apohan, and A. Gungor. 2009. Immobilization of $\alpha$-amylase onto cyclic carbonate bearing hybrid material. Food Chem. 112: 992-997.   DOI   ScienceOn
36 van der Maarel, M. J., B. van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the $\alpha$-amylase family. J. Biotechnol. 94: 137-155.   DOI   ScienceOn