DOI QR코드

DOI QR Code

Investigation of Water Evaporation from Biomass with Different Torrefaction Environments

반탄화 환경변화에 따른 바이오매스의 수분증발에 관한 연구

  • Received : 2013.03.12
  • Accepted : 2013.08.06
  • Published : 2013.10.01

Abstract

Owing to the Increasing use of fossil fuels, worldwide concerns over environmental pollution are increasing. As a solution, ligneous biomass has emerged as a promising alternative fuel in recent times. Therefore, in this study, a moisture evaporation model that largely influences the energy density and efficiency of ligneous biomass is studied using a numerical approach. Furthermore, the thermal characteristics are analyzed in terms of torrefaction temperature and moisture fractions in the wood, and the type of wood species. The results show that the temperature and moisture fractions of wood decrease with an increase in the torrefaction temperature. In particular, when the torrefaction temperature is lower than 423K, there were little changes in the moisture fraction in the wood. Furthermore, it was found that charcoal is produced more slowly as the moisture fraction in the wood increases.

화석연료의 사용량이 증가함에 따라 전 세계적으로 환경오염문제에 대한 관심이 높아지고 있다. 이에 대한 해결책으로 신재생에너지에 대한 관심이 집중되고 있는 가운데 목질계 바이오매스의 연료화가 그 해결책의 하나로 떠오르고 있다. 따라서 본 연구에서는 목질계 바이오매스의 에너지 효율에 큰 영향을 미치는 수분증발 모델을 제시하고 반탄화 온도, 나무의 수분율, 그리고 바이오매스 종류에 따른 특성을 분석하였다. 그 결과, 반탄화 온도가 상승함에 따라 나무의 온도와 수분율은 빠르게 감소하였다. 그리고 반탄화 온도가 423K 이하인 경우에는 나무 수분율의 변화가 거의 나타나지 않았다. 또한 나무의 초기 수분율이 높을수록 숯(charcoal)이 더 느리게 생성될 뿐만 아니라, 아몬드쉘(almond shell)의 경우 가장 많은 숯이 생성되는 것을 확인하였다.

Keywords

References

  1. Blasi, C., 1993, "Modeling and Simulation of Combustion Processes of Charring and Non-charring Solid Fules," Progress in Energy and Combustion Science, Vol. 19, No. 5, pp. 71-104. https://doi.org/10.1016/0360-1285(93)90022-7
  2. Blasi, C., 1996, "Heat, Momentum and Mass Transport Through a Shrinking Biomass Particle Exposed to Thermal Radiation," Chemical Engineering Science, Vol. 51, No. 7, pp. 1121-1132. https://doi.org/10.1016/S0009-2509(96)80011-X
  3. Babu, B. V. and Chaurasia, A. S., 2004, "Pyrolysis of Biomass: Improved Models for Simultaneous Kinetics and Transport of Heat, Mass and Momentum," Energy Conversion and Management, Vol. 45, Nos. 9-10, pp. 1297-1327. https://doi.org/10.1016/j.enconman.2003.09.013
  4. Prins, M. J., Ptasinski, K. J. and Janssen, F. J. J. G., 2006, "Torrefaction of Wood. Part 1: Weight Loss Kinetics," Journal of Analytical and Applied Pyrolysis, Vol. 77, No. 1, pp. 28-34. https://doi.org/10.1016/j.jaap.2006.01.002
  5. Turner, I., Rousset, P., Remond, R. and Perre, P., 2010, "An Experimental and Theoretical Investigation of the Thermal Treatment of Wood (Fagus Sylvatica L.) in the Range $200-260^{\circ}C$," International Journal of Heat and Mass Transfer, Vol. 53, No. 4, pp. 715-725. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.020
  6. Chan, W. C. R., Kelbon, M. and Krieger, B. B., 1985, "Modelling and Experimental Verification of Physical and Chemical Processes During Pyrolysis of a Large Biomass Particle," Fuel, Vol. 64, No. 11, pp. 1505-1513. https://doi.org/10.1016/0016-2361(85)90364-3
  7. Felfli, F. F., Soler, P. B. and Rocha, J. D., 2004, "Mathmatical Modelling of Wood and Briquettes Torrefaction," Proceedings of the 5th Encontro de Energia no Meio Rural, Campinas, Spain, October 19-21.
  8. Thurner, F. and Mann, U., 1981, "Kinetic Investigation of Wood Pyrolysis," Industrial & Engineering Chemistry Process Design and Development, Vol. 20, No. 3, pp. 482-488. https://doi.org/10.1021/i200014a015
  9. Jalan, R. K. and Srivastava, V. K., 1999, "Studies on Pyrolysis of a Single Biomass Cylindrical Pellet-Kinetics and Heat Transfer Effects," Energy Conversion & Management, Vol. 40, No. 5, pp. 467-494. https://doi.org/10.1016/S0196-8904(98)00099-5
  10. Pyle, D. L. and Zaror, C. A., 1984, "Heat Transfer and Kinetics in the Low Temperature Pyrolysis of Solids," Chemical Engineering Science, Vol. 39, No. 1, pp. 147-158. https://doi.org/10.1016/0009-2509(84)80140-2