DOI QR코드

DOI QR Code

Structural Analysis and Shape Optimization for Rotor of Turbomolecular Pump Using P-Method

P-기법을 이용한 터보분자펌프 로터의 구조해석 및 형상최적설계

  • Won, Bo Reum (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.) ;
  • Jung, Hae Young (Fluid Machinery Technology & Research Center, DAE JOO Inc.) ;
  • Han, Jeong Sam (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.)
  • 원보름 (안동대학교 기계설계공학과) ;
  • 정해영 ((주)대주기계 유체기계기술연구소) ;
  • 한정삼 (안동대학교 기계설계공학과)
  • Received : 2012.12.28
  • Accepted : 2013.08.20
  • Published : 2013.10.01

Abstract

In recent times, turbomolecular pumps (TMPs) have been used frequently to generate and maintain high and clean vacuum. Because of the high-speed rotation of the rotor, its structural safety should be treated as the first design concern. This paper presents the structural analysis and optimization of rotor blades of a TMP. To increase the numerical efficiency in the finite element modeling and analysis, the P-method provided in Pro/ENGINEER was used for simulation. The structural responses for several types of rotor blades were investigated, and the effects of the blade angle, blade length, and round size are thoroughly studied for each type of TMP blade. In addition, structural optimization to reduce and even the maximum stress at each stage of the TMP by changing the size of rounds between the blade and the hub was performed very successfully by using the P-method.

터보분자펌프는 회전하는 로터 블레이드의 고속회전을 통해 진공을 생성하는 고진공, 고청정 펌프로 로터의 고속회전에 따른 구조적 안전성이 우선 평가되어야 한다. 본 논문에서는 터보분자펌프의 배기성능 및 구조적 안전성에 영향을 미치는 인자 중에서 블레이드 각도, 길이, 블레이드가 시작되는 부분의 라운드 크기, 회전속도를 선정하여 그들의 변화에 대한 변위 및 응력 응답을 관찰하는 민감도 평가 및 최적설계를 수행하였다. 일반적인 유한요소해석기법인 H-기법이 아닌 형상요소해석기법인 P-기법을 사용함으로써 복잡한 형상의 유한요소생성 모델링 시간을 단축시켜 해석의 효율성을 높일 수 있었다.

Keywords

References

  1. Kang, S. B., Shine, J. H., Cha, D. H., Go, D. Y., Jeong, Y. S. and Im, J. Y., 2010,"Study on the Measurement of TMP Pumping Speed," The Korea Vacuum Socieity, Vol. 19, No. 4, pp. 249-225. https://doi.org/10.5757/JKVS.2010.19.4.249
  2. Lee, W. Y., Kook, J. H., Park, J. K. and Koo, B. H., 2002, "Analysis for Design of a High Vacuum Turbomolecular Pump," Jounal of the Korean Society of Semiconductor Equipment Technology, Vol. 1, No. 1, pp. 41-45.
  3. Henning, J., 1988, "Thirty years of turbomolecular pumps: A review and recent developments," Journal of Vacuum Science & Technology A, Vol. 6, No. 3, pp.1196-1201. https://doi.org/10.1116/1.575676
  4. In, S. R. and Park, M. Y., 2000, "Quasi-quantitative estimation on backstreaming characteristics of a turbomolecular pump," Korea Atomic Energy Research Institute, Vol. 10, No. 1, pp. 1-8.
  5. Cho, S. R., Noh, M. G. and Park, B. C., 2004,"Design and Implementation of a Fault-Tolerant Magnetic Bearing System for Turbo-Molecular Vacuum Pump, " Trans. Korean Soc. Mech. Eng., pp. 760-765.
  6. Noh, S. G., Shin, W. C. and Lee, H. G., 2009, "Control of a Magnetic Bearing System for a Compound Turbomolecular Vacuum Pump," Korean Society for Precision Engineering, pp. 321-322.
  7. Lee, W. Y., Kook, J. H., Park, J. K. and Koo, B. H., 2008, "Analysis for Design of a High Vacuum Turbomolecular Pump," Journal of the Korean Society of Semiconductor Equipment Technology, Vol. 1, No. 1, pp.41-45.
  8. Han, J. S., 2011, "Rotordynamic Analysis of Turbomelecular Pump," The Korean Society for Noise and Vibration Engineering, pp.764-765.
  9. Chiang, HW. D., Kuan, CP. and Li, HL., 2009, "Turbomolecular Pump Rotor-Bearing System Analysis and Testing," Journal of Vacuum Science & Technology A, Vol. 27, No. 5, pp.1196-1203. https://doi.org/10.1116/1.3179157
  10. Iqbal, M., Wasy, A., Batani, D., Rashid, H. and Lodhi, M.A.K., 2012, "Design Modification in Rotor Blade of Turbo Molecular Pump," Nuclear Instruments and Methodsin Physics Research A, Vol. 678, pp.88-90. https://doi.org/10.1016/j.nima.2012.02.030
  11. Hwang, Y. K. and Hoe, J. S., 1996, "A Numerical Study of the Performance of a Turbomolecular pump," Trans. Korean Soc. Mech. Eng. B, Vol. 20, No. 11, pp. 3620-3629.
  12. Ju, J. H., 2004, Practical Vacuum Technology, Hongreung Science Publisher, Korea, pp. 118-148.
  13. Bea, S. H., In S. R., Jeong, K. H., Lee, Y. B. and Shin, Y. H., 2000, Vacuum Engineering, Korea Economic Daily, Korea, pp. 194-200.
  14. Jeong, S. M., Lee, J. W. and Park, J. Y., 2001, Introductory Vacuum Science & Technology, Cheongmun- gak, Korea, pp. 206-213.
  15. Sengil, N., 2012, "Performance Increase in Turbomolecular Pumps with Curved Type Blades," Vacuum, Vol. 86, No. 11, pp.1764-1769. https://doi.org/10.1016/j.vacuum.2011.12.018
  16. Joshi, S. C., 2005, "Technology Development for Indigenous Turbo Molecular Pumps," Indian Vacuum Society National Symposium.
  17. Yoon, S. H., Jeon, S. M. and Kim, M., 2011, "Structural Effects of Geometric Parameters on Liquid Rocket Turbopump Turbine blades," Korea Aerospace Research Institute, Vol. 10, No. 1, pp. 30-38.
  18. Woo, K. S., Chang, Y. C. and Jung, W. S., 1992, "PVersion Model Based on Hierarchic Axisymmetric Element," Korean Society of Civil Engineers, Vol. 12, No. 4-1, pp. 67-76.
  19. Houmat, A. and Rashid, M. M., 2012, "Coupling of h and p Finite Elements: Application of Free Vibration Analysis of Plates with Curvilinear Plan-Forms," Applied Mathematical Modeling, Vol. 36, No. 2, pp.505-520. https://doi.org/10.1016/j.apm.2011.07.048
  20. www.ptc.com.
  21. Schittkowski, K., Zillober, C, and Zotemantel, R., 1994, "Numerical Comparison of Nonlinear Programming Algorithms for Structural Optimization," Structural Engineering, Vol. 7, No. 1, pp.1-19.
  22. Park, J. Y., 1998, "SQP Method for Optimal Design of Trusses Subject to Multiple Loading Conditions," Architectural Institute of Korea, Vol. 14, No. 7, pp.21-28.

Cited by

  1. A Destruction Pattern Analysis of a Turbo-Molecular Pump According to the Foreline Clamp Damage in an ICP Dry Etcher for 300 mm Wafers vol.24, pp.2, 2015, https://doi.org/10.5757/ASCT.2015.24.2.27
  2. A Property of Crack Propagation at the Specimen of CFRP with Layer Angle vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.1013
  3. An Analytical Study on Crack Behavior Inside Standard Compact Tension Specimen with Holes vol.40, pp.6, 2016, https://doi.org/10.3795/KSME-A.2016.40.6.531