DOI QR코드

DOI QR Code

Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed

수평식 이중원통형 ZrCo 용기 내 수소 흡탈장 및 열전달 모델링

  • 박종철 (한국원자력연구원 핵주기공정개발부) ;
  • 이정민 (한국원자력연구원 핵주기공정개발부) ;
  • 구대서 (한국원자력연구원 핵주기공정개발부) ;
  • 윤세훈 (국가핵융합연구소 ITER한국사업단) ;
  • 백승우 (한국원자력연구원 핵주기공정개발부) ;
  • 정흥석 (한국원자력연구원 핵주기공정개발부)
  • Received : 2013.07.03
  • Accepted : 2013.08.31
  • Published : 2013.08.31

Abstract

Long-term global energy-demand growth is expected to increase driven by strong energy-demand growth from developing countries. Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, even though it also presents so far insurmountable scientific and engineering challenges. One of the challenges is safe handling of hydrogen isotopes. Metal hydrides such as depleted uranium hydride or ZrCo hydride are used as a storage medium for hydrogen isotopes reversibly. The metal hydrides bind with hydrogen very strongly. In this paper, we carried out a modeling and simulation work for absorption/desorption of hydrogen by ZrCo in a horizontal annulus cylinder bed. A comprehensive mathematical description of a metal hydride hydrogen storage vessel was developed. This model was calibrated against experimental data obtained from our experimental system containing ZrCo metal hydride. The model was capable of predicting the performance of the bed for not only both the storage and delivery processes but also heat transfer operations. This model should thus be very useful for the design and development of the next generation of metal hydride hydrogen isotope storage systems.

Keywords

References

  1. K. S. Krane, "Introductory Nuclear Physics", John Wiley & Son, 1988 pp. 529-530
  2. M. Shim, H. Chung, H. Yoshida, H. Jin, J. Lee, K. Song, M. Chang, H. Kang, S. Yun, and S. Cho, "Hydriding/dehydriding Characteristics on Fast Heat Transfer Response ZrCo Bed for ITER", Fusion Engineering and Design, Vol. 84, 2009, p. 1763 https://doi.org/10.1016/j.fusengdes.2008.11.006
  3. H. Petersen, "The Properties of Helium : Density, Specific Heats, Viscosity, and Thermal Conductivity at from 1 to 100 bar and from room temperature to about 1800K", Danish Atomic Energy Commission Research Establishment Riso Report, No. 224, 1970, pp. 1-45.
  4. F. Yang, X. Meng, J. Deng, Y. Wang, and Z. Zhang, "Identifying heat and mass transfer chara-cteristics of metal hydride reactor during adsorption-Parameter analysis and numerical study", International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 1014-1022.
  5. H. Yoo, J. Ko, S. Yun, M. Chang, H. Kang, and W. Kim, "A numerical investigation of hydrogen desorption phenomena in ZrCo based hydrogen storage beds", International Journal of Hydrogen Energy, Vol. 38, 2013, pp. 6226-6233. https://doi.org/10.1016/j.ijhydene.2012.12.098
  6. T. Forde, E. Naess, and V.A. Yartys, "Modelling and Experimental results of heat transfer in a metal hydride store during hydrogen charge and discharge", International Journal of Hydrogen Energy, Vol. 34, 2009, pp. 5121-5130. https://doi.org/10.1016/j.ijhydene.2009.03.019
  7. R. D. Penzhorn, M. Devillers, and M. Sirch, "Evaluation of ZrCo and other getters for tritium handling and storage", Journal of Nuclear Materials, Vol. 170, 1990, p. 217-231. https://doi.org/10.1016/0022-3115(90)90292-U
  8. M. Shim, H. Chung, H. Yoshida, K. Kim, S. Cho, E. Lee, and M. Chang, "Experimental Study on the Delivery Rate and Recovery Rate of ZrCo Hydride for ITER Application", Fusion Science and Technology, Vol. 54, 2008, p. 27. https://doi.org/10.13182/FST08-39
  9. R. D. Penzhorn and M. Sirch, "Hydrogen Sorption Rate by Intermetallic Compounds Suitable for Tritium Storage", Fusion Technology, Vol. 28, 1995, pp 1399-1403. https://doi.org/10.13182/FST95-A30607
  10. Y. A. Cengel. "Heat Transfer : A Practical Approach" 2nd Ed. John Wiley & Son Inc. 2007.
  11. Y. Wang, X. C. Adroher, J. Chen, X. G. Yang, and T. Miller, "Three- dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds", Journal of Power Sources, Vol. 194, 2009, pp. 997-1006. https://doi.org/10.1016/j.jpowsour.2009.06.060
  12. M. Shim, H. Chung, H. Yoshida, S. Cho, D. Kim, and M. Ahn, "Heat analysis on the initial reference design of ZrCo hydride beds for ITER", Fusion Engineering and Design, Vol. 83, 2008, pp. 1433-1437. https://doi.org/10.1016/j.fusengdes.2008.06.035
  13. H. Kang, S. Cho, S. Yun, M. Chang, H. Chung, and D. Koo. "Fabrication and test of thin double-layered annulus metal hydride bed.", Fusion Engineering and Design, Vol. 86, 2011, pp. 2196-2199. https://doi.org/10.1016/j.fusengdes.2010.11.024
  14. W. D. Callister and D. G. Rethwisch, "Material Science and Engineering - SI version" 8th Ed. John Wiley and Son Inc. 2011.
  15. H. G. Kraus, "Experimental Measurement of Stationary SS 304, SS316L and 8630 GTA Weld Pool Surface Temperatures." Welding Research Supplement July. 1989. pp. 269s-279s.
  16. M. Devillers, M. Sirch, S. Bredendiek-Kamper, and R. D. Penzhorn, "Characterization of the ZrCo-Hydrogen System in View of Its Use for Tritium Storage." Chemistry of Materials, 1990. 2. pp. 255-262.
  17. M. Devillers, M. Sirch, and R. D. Penzhorn. "Solubility of hydrogen and deuterium in ZrCo." Journal of Nuclear Materials, 207, 1993, 53-61. https://doi.org/10.1016/0022-3115(93)90247-V
  18. D. Chung, J. Lee, D. Koo, H. Chung, K. Kim, H. Kang, M. Chang, P. Camp, K. Jung, S. Cho, S. Yun, C. Kim, H. Yoshida, S. Paek, and H. Leea Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds, Fusion Eng. Des. (2013), http://dx.doi.org/10.1016/j.fusengdes.2013.04.004.
  19. H. Chung, D. Chung, D. Koo, J. Lee, M. Shim, S. Cho, K. Jung, S. Yun, "Storage and Delivery of Hydrogen Isotopes", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 372-379.
  20. H. Chung, K. Kang, M. Chang, S. Cho, W. Kim, J. Nam, D. Kim, K. Song, S. Paek, D. Koo, D. Chung, J. Lee, C. Kim, K. Jung and S. Yun, "Safety Analysis of a Hydrogen Isotopes Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, No. 3, 2012, pp. 219-226. https://doi.org/10.7316/KHNES.2012.23.3.219
  21. D. Koo, H. Chung, D. Chung, J. Lee, S. Yun, S. Cho and K. Jung, "Hydrogen Isotopes Accountancy and Storage Technology", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, No. 1, 2012, pp. 49-55. https://doi.org/10.7316/khnes.2012.23.1.049
  22. S. Yun, M. Chang, H. Kang, C. Kim, S. Cho, K. Jung, H. Chung and K. Song, "Tritium Fuel Cycle Technology of ITER Project", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, No. 1, 2012, pp. 56-64. https://doi.org/10.7316/khnes.2012.23.1.056
  23. J. Lee, J. Park, D. Koo, D. Chung, S. Yun, S. Paek, and H. Chung, "Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage", Trans. of the Korean Society of Hydrogen Energy, Vol. 24, No. 2, 2013, pp. 128-135. https://doi.org/10.7316/KHNES.2013.24.2.128

Cited by

  1. Characteristics of a Hydrogen Isotope Storage and Accountancy System vol.26, pp.6, 2015, https://doi.org/10.7316/KHNES.2015.26.6.541
  2. Dehydriding Performance in a Depleted Uranium Bed vol.27, pp.1, 2016, https://doi.org/10.7316/KHNES.2016.27.1.022