• 제목/요약/키워드: Hydrogen storage bed

검색결과 16건 처리시간 0.088초

수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가 (Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage)

  • 이정민;박종철;구대서;정동유;윤세훈;백승우;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션 (Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System)

  • 아닐쿠마르;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제26권4호
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

수소동위원소 저장 계량 장치 특성 연구 (Characteristics of a Hydrogen Isotope Storage and Accountancy System)

  • 김연진;정광진;구대서;박종철;전민구;윤세훈;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.541-546
    • /
    • 2015
  • Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it's heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU-$H_2$ is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.

수소동위원소 계량·공급기술 (Hydrogen Isotopes Accountancy and Storage Technology)

  • 구대서;정흥석;정동유;이정민;윤세훈;조승연;정기정
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 2012
  • Hydrogen isotopes accountancy and storage are important functions in a nuclear fusion fuel cycle. The hydrogen isotopes are safely stored in metal hydride beds. The tritium inventory of the bed is determined from the decay heat of tritium. The decay heat is measured by circulating helium through the metal hydride bed and measuring the resultant temperature increase of the helium flow. We are reporting our preliminary experimental results on the hydrogen isotopes accountancy and storage performance in a metal hydride bed.

수평식 이중원통형 ZrCo 용기 내 수소 흡탈장 및 열전달 모델링 (Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed)

  • 박종철;이정민;구대서;윤세훈;백승우;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.295-301
    • /
    • 2013
  • Long-term global energy-demand growth is expected to increase driven by strong energy-demand growth from developing countries. Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, even though it also presents so far insurmountable scientific and engineering challenges. One of the challenges is safe handling of hydrogen isotopes. Metal hydrides such as depleted uranium hydride or ZrCo hydride are used as a storage medium for hydrogen isotopes reversibly. The metal hydrides bind with hydrogen very strongly. In this paper, we carried out a modeling and simulation work for absorption/desorption of hydrogen by ZrCo in a horizontal annulus cylinder bed. A comprehensive mathematical description of a metal hydride hydrogen storage vessel was developed. This model was calibrated against experimental data obtained from our experimental system containing ZrCo metal hydride. The model was capable of predicting the performance of the bed for not only both the storage and delivery processes but also heat transfer operations. This model should thus be very useful for the design and development of the next generation of metal hydride hydrogen isotope storage systems.

수소저장합금 반응용기에서 수소 흡.탈장과정에서의 열 및 물질전달 특성에 관한 실험적인 연구 (An Experimental Study of Heat and Mass Transfer During Absorption and Desorption Processes in a Hydride Material Bed)

  • 박찬우;강병하;이춘식
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.202-211
    • /
    • 1995
  • Heat and hydrogen transfer characteristics have been experimentally investigated for a hydride reaction bed, in which hydride material LaN $i_{4,7}$A $l_{0.3}$ is contained for hydrogen storage. This problem is of particular interest in the design of metal hydride devices such as metal-hydride refrigerators, heat pumps, or metal-hydride storage units. Transient behavior of hydrogen transfer through the hydride materials as well as heat transfer is studied during absorption and desorption processes in detail. The experimental results obtained indicate that the mass flow of the hydrogen is strongly affected by the governing parameters, such as the initial pressure of the reaction bed, absorption or desorption period, and cooling or heating temperature. These mass transfer results are along with the heat transfer rate between hydride materials and heat transfer medium in the reaction bed.d.d.

삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I) (A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I))

  • 유하늘;윤세훈;장민호;강현구;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.

감손 우라늄 베드 수소 탈장 성능 (Dehydriding Performance in a Depleted Uranium Bed)

  • 구대서;김연진;윤세훈;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.22-28
    • /
    • 2016
  • It is necessary to store and supply hydrogen isotopes for Tokamak operation. A storage and delivery system (SDS) is used for storing hydrogen isotopes as a metal hydride form. We designed and fabricated a depleted uranium (DU) bed to store hydrogen isotopes. The rapid storage of hydrogen isotopes is very important not only for safety reasons but also for the economic design and operation of the SDS. The delivery rate at the desorption temperatures without the operation of a dry pump was analyzed in comparison with that with the operation of the dry pump. The effect of the initial desorption temperatures on the dehydriding of the DU without the operation of the dry pump was measured. The effect of the initial desorption temperatures on the dehydriding of DU with the operation of the dry pump was also measured and analyzed. The primary pressure on the desorption temperatures without the operation of the dry pump was analyzed in comparison with that with the operation of the dry pump. The temperature gradient of the coil heater and the primary vessel was also analyzed. Our results will be used to develop pilot scale hydrogen isotope processes. It was confirmed that dehydriding of a medium-scale DU bed has enabled without the operation of the dry pump.

ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II) (A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo)

  • 유하늘;조아래;곽건희;윤세훈;장민호;강현구;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

우라늄 베드 초기온도 및 헬륨농도의 수소 흡장 영향 (Hydriding Performance in a Uranium Bed depending on the Initial Bed Temperatures and Helium Contents)

  • 구대서;김연진;정광진;윤세훈;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.163-168
    • /
    • 2016
  • Korea has been developing nuclear fusion fuel storage and delivery system (SDS) technologies including a basic scientific study on hydrogen storage. To develop nuclear fusion technology, it is necessary to store and supply hydrogen isotopes needed for Tokamak operation. SDS is used for storing hydrogen isotopes as a metal hydride form. The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. In this study, we designed and fabricated a medium-scale getter bed of depleted uranium (DU). The hydriding of DU has been measured by varying the initial temperature ($100-300^{\circ}C$) of the DU getter bed to investigate the influence of the cooling temperature. Furthermore, we analyzed the effect of a helium blanket on the hydriding performance with 0 - 12% helium content in hydrogen.