DOI QR코드

DOI QR Code

Rapid in vivo Colonization Screening of Probiotic Bacteria Isolated from Human Infants using Caenorhabditis elegans Surrogate Host

Caenorhabditis elegans 생체대체모델을 이용한 한국 영유아분변 유래 프로바이오틱스 균주의 in vivo 장 우점능 검토

  • Park, Miri (Department of Animal Science, Chonbuk National University) ;
  • Jeong, Eun-Seon (Department of Food Science and Technology, Chonbuk National University) ;
  • Oh, Sangnam (Department of Animal Science, Chonbuk National University) ;
  • Song, Min-Ho (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Doo, Jae-Kyun (Sophia Women's Hospital) ;
  • Jeong, Yong-Seob (Department of Food Science and Technology, Chonbuk National University) ;
  • Moon, Yong-Il (Department of Animal Source Foods, Woosuk University) ;
  • Kim, Younghoon (Department of Animal Science, Chonbuk National University)
  • 박미리 (전북대학교 동물자원과학과) ;
  • 정은선 (전북대학교 식품공학과) ;
  • 오상남 (전북대학교 동물자원과학과) ;
  • 송민호 (충남대학교 동물자원생명과학과) ;
  • 두재균 (소피아 여성병원) ;
  • 정용섭 (전북대학교 식품공학과) ;
  • 문용일 (우석대학교 동물자원식품학과) ;
  • 김영훈 (전북대학교 동물자원과학과)
  • Received : 2013.05.06
  • Accepted : 2013.07.24
  • Published : 2013.08.31

Abstract

The ability of probiotics to adhere to the intestinal epithelium likely plays an important role in their colonization of the gastrointestinal tract. Here, we performed high-throughput screening (HTS) for suitable characteristics of potential probiotic bacteria using attachment and colonization ability through a C. elegans surrogate in vivo model. A total of 100 strains of lactic acid bacteria (LAB) isolated from infant feces were subjected to the colonization assay using C. elegans intestine. Based on colonization ability, we showed that nine isolates have a high attachment ability during whole experimental periods (up to 168 h), compared to Lactobacillus rhamnosus strain GG as a control. Also, through the use of an in vitro cell attachment model, nine isolates revealed highly binding activity to the mucus layer. Next, the selected 9 isolates were assayed for their survival ability when exposed to acidic and bile conditions as well as cholesterol reduction and the utilization of prebiotic substrates. As a result, the isolated nine strains were determined to be highly resistant to acid and bile conditions. In addition, they have significant activity for the reduction of cholesterol and utilization of several prebiotic substrates as a carbon source. Finally, the selected nine strains were identified by either L. rhamnosus or L. plantarum (4 strains for L. rhamnosus and 5 strains for L. plantarum, respectively). Taken together, we propose that the direct colonization of probiotics using C. elegans may be applicable to the rapid screening of valuable probiotic strains in vivo.

Probiotic 기능성이 우수한 유산균을 선발하기 위하여 9개월 미만의 모유수유아로부터 100종의 Lactobacillus균을 분리하였다. C. elegans를 이용한 in vivo 실험으로 장내 우점능을 검사하여 L. rhamnosus GG와 비교했을 때 다른 균주들보다 상대적으로 장환경에 대하여 우수한 우점특성을 갖는 probiotic 유산균주 9종을 선발하였다. Mucin을 이용한 in vitro 부착능력 검토결과, L. rhamnosus GG대비 90% 이상의 부착능을 보였으며, pH 2.5에서의 내산성 및 0.5% oxgall을 함유한 내담즙성에서 각각 97% 이상과 99% 이상의 높은 생존율을 나타냈다. 또, 81% 이상의 높은 콜레스테롤 저해능과 다양한 prebiotics 이용가능성을 확인하였고 최종적으로 L. rhamnosus 4종, L. plantarum 5종인 것으로 동정되었다. 이상의 결과로부터 in vivo 실험을 통해 우선 선발한 균주들이 프로바이오틱스 균주로서 요구되는 조건을 우수하게 충족시킨다는 것을 알 수 있었으며, 따라서 in vivo 모델로서 C. elegans을 이용한 장내우점능력 검토는 내산성, 내담즙성, 콜레스테롤 저하, 그리고 prebiotic 기질 이용능 등의 고기능성의 probiotic 균주 선발에 직접적으로 이용할 수 있을 것으로 기대된다.

Keywords

References

  1. Ann, E. Y., Kim, Y., Oh, S., Imm, J. Y., Park, D. J., Han, K. S., and Kim, S. H. (2007) Microencapsulation of Lactobacillus acidophilus ATCC 43121 with prebiotic substrates using a hybridisation system. Int. J. Food Sci. Tech. 42, 411-419. https://doi.org/10.1111/j.1365-2621.2007.01236.x
  2. Azcarate-Peril, M. A., Tallon, R., and Klaenhammer, T. R. (2009) Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J. Dairy Sci. 92, 870-886. https://doi.org/10.3168/jds.2008-1457
  3. Biedrzycka, E. and Bielecka, M. (2004) Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci. Tech. 15, 170-175. https://doi.org/10.1016/j.tifs.2003.09.014
  4. Boris, S., Suarez, J., and Barbes, C. (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J. Appl. Microbiol. 83, 413-420. https://doi.org/10.1046/j.1365-2672.1997.00250.x
  5. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
  6. Coconnier, M. H., Klaenhammer, T., Kerneis, S., Bernet, M., and Servin, A. (1992) Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucussecreting cell lines in culture. Appl. Environ. Microb. 58, 2034-2039.
  7. Dambekodi, P. C. and Gilliland, S. E. (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81, 1818-1824. https://doi.org/10.3168/jds.S0022-0302(98)75751-0
  8. Erkkila, S. and Petaja, E. (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300. https://doi.org/10.1016/S0309-1740(99)00156-4
  9. Fang, H., Elina, T., Heikki, A., and Seppo, S. (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Mic. 29, 47-52. https://doi.org/10.1111/j.1574-695X.2000.tb01504.x
  10. Gilliland, S., Nelson, C., and Maxwell, C. (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microb. 49, 377-381.
  11. Han, K. S., Imm, J. Y., Oh, S. J., Jeon, W. M., and Kim, S. H. (2002) Characterization and purification of bacteriocin produced by Lactobacillus acidophilus ATCC 4356. Food Sci. Biotechnol. 11, 531-536.
  12. Irazoqui, J. E., Urbach, J. M., and Ausubel, F. M. (2010) Evolution of host innate defence: Insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 10, 47-58. https://doi.org/10.1038/nri2689
  13. Kim, J., Chun, J., and Han, H. U. (2000) Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Micr. 50, 1915-1919.
  14. Kim, Y. and Mylonakis, E. (2012) C. elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus NCFM enhances Gram-positive immune responses. Infect. Immun. 80, 2600-2508
  15. Kim, Y., Whang, J. Y., Whang, K. Y., Oh, S., and Kim, S. H. (2008) Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Biosci. Biotech. Biochem. 72, 1483-1490. https://doi.org/10.1271/bbb.70802
  16. Kirjavainen, P. V., Apostolou, E., Arvola, T., Salminen, S. J., Gibson, G. R., and Isolauri, E. (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol. Med. Mic. 32, 1-7. https://doi.org/10.1111/j.1574-695X.2001.tb00526.x
  17. Kleesen, B., Hartmann, L., and Blaut, M. (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Brit. J. Nutr. 86, 291-300. https://doi.org/10.1079/BJN2001403
  18. Lee, S., Yang, E., Kwon, H., Kang, J., and Kang, B. (2008) Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Korean J. Microbiol. Biotechnol. 36, 121-127.
  19. Matsumura, A., Saito, T., Arakuni, M., Kitazawa, H., Kawai, Y., and Itoh, T. (1999) New binding assay and preparative trial of cell-surface lectin from Lactobacillus acidophilus group lactic acid bacteria. J. Dairy Sci. 82, 2525-2529. https://doi.org/10.3168/jds.S0022-0302(99)75505-0
  20. Mitsuoka, T. (1990) Bifidobacteria and their role in human health. J. Ind. Microbiol. 6, 263-267. https://doi.org/10.1007/BF01575871
  21. Oh, S., Kim, S. H., and Worobo, R. W. (2000) Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. J. Dairy Sci. 83, 2747-2752. https://doi.org/10.3168/jds.S0022-0302(00)75169-1
  22. Ouwehand, A. C., Tuomola, E. M., Tolkko, S., and Salminen, S. (2001) Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int. J. Food Microbiol. 64, 119-126. https://doi.org/10.1016/S0168-1605(00)00440-2
  23. Paik, H. D. (2004) Identification and probiotic properties of Lactococcus lactis NK24 isolated from Jeot-gal, a Korean fermented food. Food Sci. Biotechnol. 13, 411-416.
  24. Powell, J. and Ausubel, F. (2008) Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. In: Innate Immunity. Ewbank, J. and Vivier, E. (eds) Humana Press, pp. 403-427.
  25. Razin, S., Kutner, S., Efrati, H., and Rottem, S. (1980) Phospholipid and cholesterol uptake by mycoplasma cells and membranes. BBA-Biomembranes 598, 628-640. https://doi.org/10.1016/0005-2736(80)90042-5
  26. Reid, G. and Burton, J. (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4, 319-324. https://doi.org/10.1016/S1286-4579(02)01544-7
  27. Reid, G., McGroarty, J. A., Angotti, R., and Cook, R. L. (1988) Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 34, 344-351. https://doi.org/10.1139/m88-063
  28. Riddle, D. L., Meyer, B. J., and Priess, J. R. (eds) (1997) C. elegans II. Cold Spring Harbor Laboratory Press. Cold Spring Harbor.
  29. Roberfroid, M. (2007) Prebiotics: The concept revisited. J. Nutr. 137, 830S-837S.
  30. Rudel, L. and Morris, M. (1973) Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 14, 364-366.
  31. Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila-Sandholm, T. (2000) Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84, 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  32. Salminen, S., Bouley, C., Boutron-Ruault, M., Cummings, J., Franck, A., Gibson, G., Isolauri, E., Moreau, M., Roberfroid, M., and Rowland, I. (1998) Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 80, S147. https://doi.org/10.1079/BJN19980108
  33. Saulnier, D. M. A., Spinler, J. K., Gibson, G. R., and Versalovic, J. (2009) Mechanisms of probiosis and prebiosis: Considerations for enhanced functional foods. Curr. Opin. Biotech. 20, 135-141. https://doi.org/10.1016/j.copbio.2009.01.002
  34. Sridevi, N., Vishwe, P., and Prabhune, A. (2009) Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Res. Int. 42, 516-520. https://doi.org/10.1016/j.foodres.2009.02.016

Cited by

  1. Short communication: In vivo screening platform for bacteriocins using Caenorhabditis elegans to control mastitis-causing pathogens vol.99, pp.11, 2016, https://doi.org/10.3168/jds.2016-11330
  2. In vitroevaluation of the mucin-adhesion ability and probiotic potential ofLactobacillus mucosaeLM1 vol.117, pp.2, 2014, https://doi.org/10.1111/jam.12539
  3. Bacillus licheniformisIsolated from Traditional Korean Food Resources Enhances the Longevity ofCaenorhabditis elegansthrough Serotonin Signaling vol.63, pp.47, 2015, https://doi.org/10.1021/acs.jafc.5b03730
  4. Fermentation and Quality Evaluation of makgeolli, Korean Rice Wine Supplemented with Alcohol-tolerant Pediococcus acidilactici K3 vol.42, pp.4, 2013, https://doi.org/10.4014/kjmb.1409.09002
  5. Bacillus amyloliquefaciens SCGB1 Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice Through Immune Regulation vol.24, pp.7, 2013, https://doi.org/10.1089/jmf.2021.k.0044