DOI QR코드

DOI QR Code

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K. (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Nam, K.W. (Chemistry Department, Brookhaven National Laboratory) ;
  • Hu, E.Y. (Chemistry Department, Brookhaven National Laboratory) ;
  • Yang, X.Q. (Chemistry Department, Brookhaven National Laboratory) ;
  • Lee, Y.S. (Faculty of Applied Chemical Engineering, Chonnam National University)
  • Received : 2013.01.29
  • Accepted : 2013.04.03
  • Published : 2013.07.20

Abstract

Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

Keywords

References

  1. Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13, 943. https://doi.org/10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO;2-J
  2. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2003, 150, A1044. https://doi.org/10.1149/1.1584439
  3. Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Amine, K.; Thackeray, M. M. J. Electrochem. Soc. 2006, 153, A1186. https://doi.org/10.1149/1.2194764
  4. Thackeray, M. M.; David, W. I. F.; Goodenough, J. B. Mater. Res. Bull. 1982, 17, 785. https://doi.org/10.1016/0025-5408(82)90029-0
  5. Tabuchi, M.; Ado, K.; Sakaebe, H.; Masquelier, C.; Kageyama, H.; Nakamura, O. Solid State Ionics 1995, 79, 220. https://doi.org/10.1016/0167-2738(95)00065-E
  6. Alcantara, R.; Jumas, J. C.; Lavela, P.; Fourcade, J. O.; Vicente, C. P.; Tirado, J. L. J. Power Sources 1999, 81-82, 547. https://doi.org/10.1016/S0378-7753(99)00213-X
  7. Reimers, J. N.; Rossen, E.; Jones, C. D.; Dahn, J. R. Solid State Ionics 1993, 61, 335. https://doi.org/10.1016/0167-2738(93)90401-N
  8. Tabuchi, M.; Nabeshima, Y.; Ado, K.; Shikano, M.; Kageyama, H.; Tatsumi, K. J. Power Sources 2007, 174, 554. https://doi.org/10.1016/j.jpowsour.2007.06.247
  9. Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Kageyama, H.; Tatsumi, K.; Akimoto, J.; Shibuya, H.; Imaizumi, J. J. Power Sources 2011, 196, 3611. https://doi.org/10.1016/j.jpowsour.2010.12.060
  10. Larson, A. C.; Von Dreele, R. B. Los Alamos National Laboratory Report; LAUR: 2000; p 86.
  11. Toby, B. H. J. Appl. Cryst. 2001, 34, 210. https://doi.org/10.1107/S0021889801002242
  12. Sayers, D. E.; Bunker, B. A. In X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES; Vol. 92 of Chemical Analysis, Koningsberger, D., Prins, R., Eds.; John Wiley and Sons: New York, 1988; Chap. 6, p 443.
  13. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A815. https://doi.org/10.1149/1.1480014
  14. Weill, F.; Tran, N. et al., Electrochem. Solid-State Lett. 2007, 10, A194. https://doi.org/10.1149/1.2746516
  15. Rougier, A.; Gravereau, P.; Delmas, C. J. Electrochem. Soc. 1996, 143, 1168. https://doi.org/10.1149/1.1836614
  16. Ammundsen, B.; Paulsen, J.; Davidson, I.; Liu, R. S.; Shen, C. H.; Chen, J. M.; Jang, L. Y.; Lee, J. F. J. Electrochem. Soc. 2002, 149, A431. https://doi.org/10.1149/1.1456535
  17. Paulsen, J. M.; Thomas, C. L.; Dahn, J. R. J. Electrochem. Solid-State Lett. 2000, 147, 861.
  18. Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. J. Power Sources 2003, 119, 644.
  19. Lu, Z.; MacNeil, D. D.; Dahn, J. R. Electrochem. Solid State Lett. 2001, 4, A191. https://doi.org/10.1149/1.1407994
  20. Ammundsen, B. J. Paulsen, Adv. Mater. 2001, 13, 943. https://doi.org/10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO;2-J
  21. Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Tatsumi, K.; Imaizumi, J.; Nitta, Y. J. Power Sources 2010, 195, 834. https://doi.org/10.1016/j.jpowsour.2009.08.059
  22. Delmas, C.; Menetrier, M.; Croguennec, L.; Saadoune, I.; Rougier, A.; Pouillerie, C.; Prado, G.; Grune, M.; Fournes, L. Electrochim. Acta 1999, 45, 243. https://doi.org/10.1016/S0013-4686(99)00208-X
  23. Kim, M. G.; Yo, C. H. J. Phys. Chem. B 1999, 103, 6457. https://doi.org/10.1021/jp990753b
  24. Kim, M. G.; Shin, H. J.; Kim, J. H.; Park, S. H.; Sun, Y. K. J. Electrochem. Soc. 2005, 152, A1320. https://doi.org/10.1149/1.1926647
  25. Yoon, W. S.; Grey, C. P.; Balasubramanian, M.; Yang, X. Q.; McBreen, J. Chem. Mater. 2003, 15, 3161. https://doi.org/10.1021/cm030220m
  26. Kim, T. W.; Ha, H. W.; Paek, M. J.; Hyun, S. H.; Baek, I. H.; Choy, J.-H.; Hwang, S. J. J. Phys. Chem. C 2008, 112, 14853. https://doi.org/10.1021/jp805488h
  27. Wooa, M. A.; Kima, T. W.; Kima, I. Y.; Hwang, S. J. Solid State Ionics 2011, 182, 91. https://doi.org/10.1016/j.ssi.2010.10.025
  28. Combarieu, G.; Hamelet, S.; Millange, F.; Morcrette, M.; Tarascon, J. M.; Ferey, G.; Walton, R. I. Electrochem. Comm. 2009, 11, 1881. https://doi.org/10.1016/j.elecom.2009.08.008
  29. Suryanarayana, C.; Koch, C. C. Hyperfine Interact. 2000, 130, 5.
  30. Karthikeyan, K.; Amaresh, S.; Lee, G. W.; Aravindan, V.; Kim, H.; Kang, K. S.; Kim, W. S.; Lee, Y. S. Electrochim. Acta 2012, 68, 246. https://doi.org/10.1016/j.electacta.2012.02.076
  31. Lu, Z.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. J. Eleclectrochem. Soc. 2002, 6, A778.
  32. Kang, S. H.; Kim, J.; Stoll, M. E.; Abraham, D.; Sun, Y. K.; Amine, K. J. Power Sources 2002, 112, 41. https://doi.org/10.1016/S0378-7753(02)00360-9
  33. Wu, F.; Wang, M.; Su, Y.; Bao, L.; Chen, S. J. Power Sources 2010, 195, 2362. https://doi.org/10.1016/j.jpowsour.2009.10.043

Cited by

  1. Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries vol.161, pp.3, 2014, https://doi.org/10.1149/2.040403jes
  2. A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries vol.161, pp.3, 2014, https://doi.org/10.1149/2.070403jes
  3. Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery vol.163, pp.8, 2016, https://doi.org/10.1149/2.0121608jes
  4. Morphology-optimization-enabled rate and cycle performance of LiNi1/3Co1/3Mn1/3O2 cathodes: evaluation at coin and pouch cell level under different temperatures vol.32, pp.10, 2013, https://doi.org/10.1007/s10854-021-05971-x