• Title/Summary/Keyword: Lithium Mn oxide

Search Result 61, Processing Time 0.026 seconds

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

Crystallinity and Battery Properties of Lithium Manganese Oxide Spinel with Lithium Titanium Oxide Spinel Coating Layer on Its Surface

  • Ji, Mi-Jung;Kim, Eun-Kyung;Ahn, Yong-Tae;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.633-637
    • /
    • 2010
  • In this study, lithium manganese oxide spinel ($LiMn_{1.9}Fe_{0.1}Nb_{0.0005}O_4$) as a cathode material of lithium ion secondary batteries is synthesized with spray drying, and in order to increase its crystallinity and electrochemical properties, the granulated $LiMn_{1.9}Fe_{0.1}Nb_{0.0005}O_4$ particle surface is coated with lithium titanium oxide spinel ($Li_4Ti_5O_{12}$) through a sol-gel method. The granulated particles present a higher tap density and lower specific surface area. The crystallinity and discharge capacity of the $Li_4Ti_5O_{12}$ coated material is relatively higher than uncoated material. With the coating layer, the discharge capacity and cycling stability are increased and the capacity fading is suppressed successfully.

Chromatographic Enrichment of Lithium Isotopes by Hydrous Manganese(IV) Oxide

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.503-506
    • /
    • 2001
  • Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography. The capacity of manganese(IV) oxide ion exchanger was 0.5 meq/g. One molar CH3COO Na solution was used as an eluent. The heavier isotope of lithium was enriched in the solution phase, while the lighter isotope was enriched in the ion exchanger phase. The separation factor was calculated according to the method of Glueckauf from the elution curve and isotopic assays. The single stage separation factor of lithium isotope pair fractionation was 1.021.

The Synthesis and Electrochemical Properties of Lithium Manganese Oxide (Li2MnO3)

  • Seo, Hyo-Ree;Lee, Eun-Ah;Yi, Cheol-Woo;Kim, Ke-On
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • The layered lithium-manganese oxide ($Li_2MnO_3$) as a cathode material of lithium ion secondary batteries was prepared and characterized the physico-chemical and electrochemical properties. The morphological and structural changes of MnO(OH) and $Li_2MnO_3$ are closely connected to the changes of electrochemical properties. The crystallinity of $Li_2MnO_3$ is enhanced as the annealing temperature increase, but its capacity is reduced due to the easier structural changes of less crystalline $Li_2MnO_3$ than highly crystalline one. Moreover, the addition of buffer material such as MnO(OH) into cathode causes to reduce the morphological and structural changes of layered $Li_2MnO_3$ and increase the discharge capacity and cycleability.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

Properties of charge/discharge in synthesis method or substituting transition element for Li-Mn Oxide (전이금속 치환 및 합성방법에 따른 Li-Mn 산화물의 충방전 특성)

  • Jee, Mi-Jung;Choi, Byung-Hyun;Lee, Dae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.46-46
    • /
    • 2007
  • There has been rapid progress in the portable electronics industry. which has led to a great increase for a demand of portable, lightweight power sources. Lithium 2'nd batteries have met these demand. and many studies on the cahtod materials for the lithium 2,nd batteries have been reported during the last decade. Possible candidates for the cathode materials for lithium 2,nd batteries are $LiCoO_2$, $LiNiO_2$, and $LiMn_2O_4$. Currently $LiCoO_2$ is widely used. but $LiMn_2O_4$ is an excellent alternative material in view of its several advantages such a low cost as well as the wasy availability of raw materials and environmental benignity. In this study, find the most suitable synthesis method that satisfied high capacitor and stability cycle character, etc in Li-Mn oxide for 2'nd batteries. And also made an experiment on doping the $LiMn_2O_4$ spinel with a small amount of metal ions has a remarkable effect on the electrochemical properties and characterics of powder, BET, PSA, Porosity, etc.

  • PDF

Effects of Reaction Parameters on the Preparation of LiMn2O4 for Lithium-Ion Batteries by SHS (리튬이온전지용 LiMn2O4분말의 자전연소합성시 반응변수의 영향)

  • Jang, Chang-Hyun;Nersisyan Hayk;Won, Chang-Whan;Kwon, Hyuk-Sang
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.588-593
    • /
    • 2006
  • Spinel phase $LiMn_2O_4$ is of great interest as cathode materials for lithium-ion batteries. In this study, SHS (Self propagating High-temperature Synthesis) method to synthesize spinel $LiMn_2O_4$ directly from lithium nitrate, manganese oxide, manganese and sodium chloride were investigated. The influence of Li/Mn ratio, the heat-treated condition of product have been explored. The resultant $LiMn_2O_4$ synthesized under the optimum synthesis conditions shows perfect spinel structure, uniform particle size and excellent electrochemical performances.

Synthesis of One-dimensional Spinel LiMn2O4 Nanostructures as a Positive Electrode in Lithium Ion Battery

  • Lee, Hyun-Wook;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.379-383
    • /
    • 2011
  • This paper presents the synthesis of one-dimensional spinel $LiMn_2O_4$ nanostructures using a facile and scalable two-step process. $LiMn_2O_4$ nanorods with average diameter of 100 nm and length of 1.5 ${\mu}m$ have been prepared by solid-state lithiation of hydrothermally synthesized ${\beta}$-$MnO_2$ nanorods. $LiMn_2O_4$ nanowires with diameter of 10 nm and length of several micrometers have been fabricated via solid-state lithiation of ${\beta}$-$MnO_2$ nanowires. The precursors have been lithiated with LiOH and reaction temperature and pressure have been controlled. The complete structural transformation to cubic phase and the maintenance of 1-D nanostructure morphology have been evaluated by XRD, SEM, and TEM analysis. The size distribution of the spinel $LiMn_2O_4$ nanorods/wires has been similar to the $MnO_2$ precursors. By control of reaction pressure, cubic 1-D spinel $LiMn_2O_4$ nanostructures have been fabricated from tetragonal $MnO_2$ precursors even below $500^{\circ}C$.

Li+ Extraction Reactions with Ion-exchange type Lithium Manganese Oxide and Their Electronic Structures (이온교환형 리튬망간산화물의 리튬이온 용출특성 및 전자상태)

  • Kim, Yang-Soo;Chung, Kang-Sup;Lee, Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.860-864
    • /
    • 2002
  • $Li^{+}$ extraction reactions with ion-exchange type lithium manganese oxide in an aqueous phase were examined using chemical and x-ray diffraction (XRD) analysis. In the process of extraction reaction, the lithium manganese oxide showed a topotactic extraction of $Li^{+ }$ in the aqueous phase mainly through an ion-exchange mechanism, and the $Li^{+}$ extracted samples indicated a high selectivity and a large capacity for $Li^{+}$ . The electronic structures and chemical bonding properties were also studied using a discrete variational (DV)-X$\alpha$ molecular orbital method with cluster model of (Li$Mn_{12}$ $O_{40}$ )$^{27-}$ for tetrahedral sites and ($Li_{7}$ Mn $O_{38}$ )$^{3}$ for octahedral site in $Li_{1.33}$ $Mn_{1.67}$ / $O_{4}$ respectively. Li in the manganese oxides is highly ionized in both sites, but the net charge of Li was greater for tetrahedral sites than octahedral. These calculations suggest that the tetrahedral sites have higher $Li^{+}$ $H^{+}$ exchangeability than the octahedral sites, and are preferable for the selective adsorption for L $i^{+}$ ions.s.

Synthesis of Lithium Manganese Oxide by a Sol-Gel Method and Its Electrochemical Behaviors (졸-겔 방법에 의한 LiMn2O4의 합성 및 전기화학적 거동)

  • Jeong, Euh-Duck;Moon, Sung-Wook;Lee, Hak-Myoung;Won, Mi-Sook;Yoon, Jang-Hee;Park, Deog-Su;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2003
  • A precursor of lithium manganese oxide was synthesized by mixing $(CH_3)_2CHOLi\;with\;Mn(CH_3COO)_2{\cdot}4H_2O$ in ethanol using a sol-gel method, then heat-treated at $400^{\circ}C\;and\;800^{\circ}C$ in air atmosphere. The condition of heat treatment was determined by thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTA). The characterization of the lithium manganese oxide was done by X-ray diffraction (XRD) spectra and scanning electron microscopy (SEM). The electrochemical characteristics of lithium manganese oxide electrode for lithium ion battery were measured by cyclic voltammetry (CV), chronoamperometry and AC impedance method using constant charge/discharge process. The electrochemical behaviors of the electrode have been investigated in a 1.0M $LiClO_4/propylene$ carbonate electrolyte solution. The diffusivity of lithium ions, $D^+\;_{Li}\;^+$, as determined by AC impedance technique was $6.2\times10^{-10}cm^2s^{-1}$.