DOI QR코드

DOI QR Code

Kinetics and Reaction Mechanism for Alkaline Hydrolysis of Y-Substituted-Phenyl Diphenylphosphinates

  • Hong, Hyo-Jeong (Department of Chemistry, Duksung Women's University) ;
  • Lee, Jieun (Gocheok High School) ;
  • Bae, Ae Ri (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2013.03.25
  • Accepted : 2013.04.08
  • Published : 2013.07.20

Abstract

The second-order rate constants ($k_{OH^-}$) for the reactions of Y-substituted-phenyl diphenylphosphinates (4a-4i) with $OH^-$ in $H_2O$ at $25.0{\pm}0.1^{\circ}C$ have been measured spectrophotometrically. Comparison of $k_{OH^-}$ with $k_{EtO^-}$ (the second-order rate constants for the corresponding reactions with $EtO^-$ in ethanol) has revealed that $EtO^-$ is less reactive than $OH^-$ although the former is ca. 3.4 $pK_a$ units more basic than the latter, indicating that the reactivity of these nucleophiles is not governed by their basicity alone. The Br${\o}$nsted-type plot for the reactions of 4a-4i with $OH^-$ is linear with ${\beta}_{lg}$ = -0.36. The Hammett plot correlated with ${\sigma}^-$ constants results in a slightly better correlation than that correlated with ${\sigma}^{\circ}$ constants but exhibits many scattered points. In contrast, the Yukawa-Tsuno plot for the same reactions exhibits an excellent linear correlation with ${\rho}$ = 0.95 and r = 0.55. The r value of 0.55 implies that a negative charge develops partially on the O atom of the leaving group. Thus, the reactions of 4a-4i with $OH^-$ have been concluded to proceed through a concerted mechanism.

Keywords

References

  1. Goldstein, A.; Aronow, L.; Kalman, S. M. Principles of Drug Action: The Basis of Pharmacology, 2nd ed.; Wiley: New York, 1974.
  2. Fest, C.; Schmidt, K. J. The Chemistry of Organophosphorus Pesticides; Springer: New York, 1971.
  3. Heath, D. F. Organophosphorus Poisons; Pergamon Press: Oxford (UK), 1961.
  4. Casida, J. E.; Quistad, G. B. Chem. Res. Toxicol. 2004, 17, 983-998. https://doi.org/10.1021/tx0499259
  5. Kassa, J. J. Toxicol. Clin. Toxicol. 2002, 40, 803-816. https://doi.org/10.1081/CLT-120015840
  6. Yang, Y. C. Acc. Chem. Res. 1999, 32, 109-115. https://doi.org/10.1021/ar970154s
  7. Eyer, P.; Szinicz, L.; Thiermann, H.; Worek, F.; Zilker, T. Toxicology 2007, 233, 108-119. https://doi.org/10.1016/j.tox.2006.08.033
  8. Petroianu, G. A.; Arafat, K.; Nurulain, S. M.; Kuca, K.; Kassa, J. J. Appl. Toxicol. 2007, 27, 168-175. https://doi.org/10.1002/jat.1189
  9. Briseno-Roa, L.; Hill, J.; Notman, S.; Sellers, D.; Smith, A. P.; Timperley, C. M.; Wetherell, J.; Williams, N. H.; Williams, G. R.; Fersht, A. R.; Griffiths, A. D. J. Med. Chem. 2006, 49, 246-255. https://doi.org/10.1021/jm050518j
  10. Yu, S. J. Pestic. Biochem. Physiol. 2006, 84, 135-142.
  11. Mishra, S.; Reddy-Noone, K.; Jain, A.; Verma, K. K. Int. J. Environ. Pollut. 2006, 27, 49-63.
  12. Duquesne, S.; Reynaldi, S.; Liess, M. Environ. Toxicol. Chem. 2006, 25, 1196-1199. https://doi.org/10.1897/05-032R1.1
  13. Lartiges, S. B.; Garrigues, P. P. Environ. Sci. Technol. 1995, 29, 1246-1254. https://doi.org/10.1021/es00005a016
  14. Buncel, E.; Um, I. H. Tetrahedron 2004, 60, 7801-7825. https://doi.org/10.1016/j.tet.2004.05.006
  15. Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamine, Oximes and Hydroxamic Acids; Wiley Press: West Sussex, 2009; Chapter 17.
  16. Terrier, F.; Rodriguez-Dafonte, P.; Le Guevel, E.; Moutiers, G. Org. Biomol. Chem. 2006, 4, 4352-4363. https://doi.org/10.1039/b609658c
  17. Terrier, F.; Le Guevel, E.; Chartrousse, A. P.; Moutiers, G.; Buncel, E. Chem. Commun. 2003, 600-601.
  18. Han, X.; Balakrishnan, V. K.; Buncel, E. Langmuir 2007, 23, 6519-6525. https://doi.org/10.1021/la063521u
  19. Churchill, D.; Dust, J. M.; Buncel, E. Can. J. Chem. 2007, 85, 421-431. https://doi.org/10.1139/v07-049
  20. Stairs, R. A.; Buncel, E. Can. J. Chem. 2006, 84, 1580-1591. https://doi.org/10.1139/v06-160
  21. Han, X.; Balakrishnan, V. K.; vanLoon, G. W.; Buncel, E. Langmuir 2006, 22, 9009-9017. https://doi.org/10.1021/la060641t
  22. Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040- 2043. https://doi.org/10.1039/b402093f
  23. Morles-Rojas, H.; Moss, R. A. Chem. Rev. 2002, 102, 2497-2521. https://doi.org/10.1021/cr9405462
  24. Kevill, D. N.; D'Souza, M. J. Can. J. Chem. 1999, 77, 1118-1122.
  25. Kevill, D. N.; Bond, M. W.; D'Souza, M. J. J. Org. Chem. 1997,
  26. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 1721-1724.
  27. Um, I. H.; Hong, J. Y.; Buncel, E. Chem. Commun. 2001, 27-28.
  28. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
  29. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
  30. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63. https://doi.org/10.1139/v02-202
  31. Pregel, M. J.; Buncel, E. J. Am. Chem. Soc. 1993, 115, 10-14. https://doi.org/10.1021/ja00054a002
  32. Bunn, S. E.; Liu, C. T.; Lu, Z.-L.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2007, 129, 16238-16248. https://doi.org/10.1021/ja076847d
  33. Lu, Z.-L.; Liu, C. T.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2007, 129, 11642-11652. https://doi.org/10.1021/ja073780l
  34. Neverov, A. A.; Lu, Z.-L.; Maxwell, C. I.; Mohamed, M. F.; White, C. J.; Tsang, J. S. W.; Brown, R. S. J. Am. Chem. Soc. 2006, 128, 16398-16405. https://doi.org/10.1021/ja0651714
  35. Maxwell, C.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem. 2005, 3, 4329-4336. https://doi.org/10.1039/b512378j
  36. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
  37. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
  38. Onyido, I.; Swierzek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703-7711. https://doi.org/10.1021/ja0501565
  39. Rawlings, J.; Cleland, W. W.; Hengge, A. C. J. Am. Chem. Soc. 2006, 128, 17120-17125. https://doi.org/10.1021/ja065931a
  40. Catrina, I.; OJBrien, P. J.; Purcell, J.; Nikolic-Hughes, I.; Zalatan, J. G.; Hengge, A. C.; Herschlag, D. J. Am. Chem. Soc. 2007, 129, 5760-5765. https://doi.org/10.1021/ja069111+
  41. Purcell, J.; Hengge, A. C. J. Org. Chem. 2005, 70, 8437-8442. https://doi.org/10.1021/jo0511997
  42. IchP-Tarrat, N.; Ruiz-Lopez, M.; Barthelat, J.-C.; Vigroux, A. Chem. Eur. J. 2007, 13, 3617-3629. https://doi.org/10.1002/chem.200601458
  43. Selmeczi, K.; Michel, C.; Milet, A.; Gautier-Luneau, I.; Philouze, C.; Pierre, J.-L.; Schnieders, D.; Rompel, A.; Belle, C. Chem. Eur. J. 2007, 13, 9093-9106. https://doi.org/10.1002/chem.200700104
  44. Haake, P.; McCoy, D. R.; Okamura, W.; Alpha, S. R.; Wong, S. Y.; Tyssee, D. A.; McNeal, J. P.; Cook, R. D. Tetrahedron Lett. 1968, 9, 5243-5246. https://doi.org/10.1016/S0040-4039(00)89832-9
  45. Istomin, B. I.; Eliseeva, G. D. Organomet. React. 1979, 16, 457-467.
  46. Williams, A.; Naylor, R. A. J. Chem. Soc. B 1971, 1967-1972. https://doi.org/10.1039/j29710001967
  47. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  48. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  49. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  50. Um, I. H.; Hong, Y. J.; Kwon, D. S. Tetrahedron. 1997, 53, 5073-5082. https://doi.org/10.1016/S0040-4020(97)00227-5
  51. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1016/S0065-3160(08)60009-X
  52. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  53. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  54. Um, I. H.; Bae, A. R. J. Org. Chem. 2012, 77, 5781-5787. https://doi.org/10.1021/jo300961y
  55. Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
  56. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  57. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  58. Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  59. Um, I. H.; Kang, J. S.; Shin, Y. H.; Buncel, E. J. Org. Chem. 2013, 78, 490-497. https://doi.org/10.1021/jo302373y
  60. Um, I. H.; Seo, J. Y.; Kang, J. S.; An, J. S. Bull. Chem. Soc. Jap. 2012, 85, 1007-1013. https://doi.org/10.1246/bcsj.20120104
  61. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536. https://doi.org/10.1021/jo050624t
  62. Castro, E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571-6575. https://doi.org/10.1021/jo0101252

Cited by

  1. vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2251
  2. Nucleophilic Substitution Reactions of 2,4-Dinitrophenyl X-Substituted-Benzenesulfonates and Y-Substituted-Phenyl 4-Nitrobenzenesulfonates with Azide Ion: Regioselectivity and Reaction Mechanism vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10259
  3. A study on the acidic hydrolysis of cyclic phosphinates: 1-Alkoxy-3-phospholene 1-oxides, 1-ethoxy-3-methylphospholane 1-oxide, and 1-ethoxy-3-methyl-1,2,3,4,5,6-hexahydrophosphinine 1-oxide vol.28, pp.5, 2017, https://doi.org/10.1002/hc.21394
  4. The Hydrolysis of Phosphinates and Phosphonates: A Review vol.26, pp.10, 2021, https://doi.org/10.3390/molecules26102840