Browse > Article
http://dx.doi.org/10.4014/kjmb.1301.01001

Production of Biodiesel and Nutrient Removal of Municipal Wastewater using a Small Scale Raceway Pond  

Kang, Zion (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Byung-Hyuk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Microbiology and Biotechnology Letters / v.41, no.2, 2013 , pp. 207-214 More about this Journal
Abstract
A concerted effort to develop alternative forms of energy is underway due to fossil fuel shortages and its deleterious effects. Recently, bioenergy from microalgae has gained prominence and the use of municipal wastewater as a low cost alternative for a nutrient source has significant advantages. In this study, we have employed municipal wastewater directly after primary treatment (primary settling basin) in a small scale raceway pond (SSRP) for microalgal growth. Indigenous microalgae in the wastewater were encouraged to grow in the SSRP under optimal conditions. The mean removal efficiencies of TN, TP, and $NH_3-N$ after 6 days were 77.77%, 63.55%, and 89.02%, respectively. The average lipid content of the microalgae was 19.51% of dry cell weight, and linolenate and linoleate (18:n) were the predominant fatty acids. The 18S rRNA gene analysis and microscopic observations of the indigenous microalgae community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. These results indicate that untreated municipal wastewater, serving as an excellent nitrogen and phosphate source for microalgal growth, could be treated using microalgae in open raceway ponds. Moreover, microalgal biomass could be further profitable by the extraction of biodiesel.
Keywords
Microalgae; biodiesel; wastewater treatment; small scale raceway pond (SSRP);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Aaronson, S. and Z. Dubinsky. 1982. Mass production of microalgae. Cell. Mol. Life Sci. 38: 36-40.   DOI   ScienceOn
2 APHA. 1998. Standard methods for the examination of water and wastewater. APHA, Washington, DC. 20th ed.
3 Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37: 911- 9117.   DOI   ScienceOn
4 Cain, J. R., D. C. Paschal, and C. M. Hayden. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 9: 9-16.   DOI   ScienceOn
5 Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.   DOI   ScienceOn
6 Craggs, R. J., P. J. McAuley, and V. J. Smith. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31: 1701-1707.   DOI   ScienceOn
7 Galbraith, K. 2009. Obama signs stimulus packed with clean energy provisions. The New York Times.
8 Garber, K. 2009. Top 5 Issues at the Copenhagen Climate Conference. US News.
9 Gonzalez, L. E., R. O. Canizares, and S. Baena. 1997. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60: 259-262.   DOI   ScienceOn
10 Guerrero, M. G., J. M. Vega, and M. Losada. 1981. The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32: 169-204.   DOI   ScienceOn
11 Jeong, M. L., J. M. Gillis, and J. -Y. Hwang. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24: 1763-1766.   DOI   ScienceOn
12 Knothe, G. 2011. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chem. 13: 3048-3065.   DOI   ScienceOn
13 Lee, E. K. 2012. Change of energy related legislation system in Korea and USA. Korean Environ. Law Assoc. 34: 117-157.
14 Lee, J. Y., C. Yoo, S. Y. Jun, C. Y. Ahn, and H. M. Oh. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: S75-S77.   DOI   ScienceOn
15 Martinez, M. E., S. Sanchez, J. M. Jimenez, F. E. Yousfi, and L. Munoz. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73: 263-272.   DOI   ScienceOn
16 Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629-636.   DOI   ScienceOn
17 Liang, F. -Y., M. Ryvak, S. Sayeed, and N. Zhao. 2012. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives. Chem. Cent. J. 6 (Suppl 1): S4.
18 Mandal, S. and N. Mallick. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84: 281-291.   DOI   ScienceOn
19 Morris, I. and P. J. Syrett. 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Microbiol. 47: 32-41.
20 Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-   DOI   ScienceOn
21 Muyzer, G., E. C. D. Waal, and A. G. Uitierlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
22 Nakayama, T., S. Watanabe, K. Mitsui, H. Uchida, and I. Inouye. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44: 47-55.   DOI
23 Oh, S. H., J. G. Han, N. Y. Kim, C. J. Sub, Y. T. Bin, L. S. Young, and L. H. Youg. 2009. Cell growth and lipid production from fed-batch cultivation of Chlorella minutissima according to culture condition. KSBB J. 24: 377-382.
24 Soeder, C. J. 1980. Mass production of microalgae: Results and Prospects. Hydrobiologia 72: 197-209.   DOI
25 Park, S. H. and J. K. Koh. 2012. Greenhouse Gas Emission Allocation for Provinces in Korea. J. Korean Regional Sci. Assoc. 28: 39-57.
26 Pittman, J. K., A. P. Dean, and O. Osundeko. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102: 17-25.   DOI   ScienceOn
27 Smith, F. W. and J. F. Thompson. 1971. Regulation of nitrate reductase in Chlorella vulgaris. Plant Physiol. 48: 224-227.   DOI   ScienceOn
28 Syrett, P. J. and I. Morris. 1963. The inhibition of nitrateassimilation by ammonium in Chlorella. Biochimica et Biophysica Acta 67: 566-575.   DOI
29 Wilkiea, A. C. and W. W. Mulbry. 2002. Recovery of dairy manure nutrients by benthic fresh water algae. Bioresour. Technol. 84: 81-91.   DOI   ScienceOn
30 Yun, Y. S., S. B. Lee, J. M. Park, C. I. Lee, and J. W. Yang. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Tech. Biotechnol. 69: 451-455.   DOI   ScienceOn
31 Yun, Y. S., J. M. Park, and J. W. Yang. 1996. Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration. Biotechnology Techniques 10: 713-716.