DOI QR코드

DOI QR Code

An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

  • Arul, Albert-Baskar (Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Han, Na-Young (Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Lee, Hookeun (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
  • Received : 2013.05.29
  • Accepted : 2013.06.17
  • Published : 2013.06.01

Abstract

Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution) method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

Keywords

References

  1. Zhang. G.; Ueberheide, B. M.; Waldemarson, S.; Myung, S.; Molloy, K.; Eriksson, J.; Chait, B. T.; Neubert, T. A.; Fenyo, D. Methods Mol. Biol. 2010, 673, 211. https://doi.org/10.1007/978-1-60761-842-3_13
  2. Zhang. G.; Fenyo. D.; Neubert. T. A. J. Proteome Res. 2009, 8, 1285. https://doi.org/10.1021/pr8006107
  3. Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C. Proc. Natl. Acad. Sci. USA. 1993, 90, 5011. https://doi.org/10.1073/pnas.90.11.5011
  4. Huddleston, M. J.; Bean, M. F.; Carr, S. A. Anal. Chem. 1993, 65, 877. https://doi.org/10.1021/ac00055a009
  5. Sitek, B.; Waldera-Lupa, D. M.; Poschmann, G.; Meyer, H. E; Stuhler, K. Methods Mol. Biol. 2012, 893, 241. https://doi.org/10.1007/978-1-61779-885-6_16
  6. Eng, J. K.; Fischer, B.; Grossmann, J.; Maccoss, M. J. J. Proteome Res. 2008, 7, 4598. https://doi.org/10.1021/pr800420s
  7. Tsou, C. C.; Tsai, C. F.; Tsui, Y. H, Sudhir, P. R.; Wang, Y. T.; Chen, Y. J.; Chen, J. Y.; Sung, T. Y.; Hsu, W. L. Mol. Cell Proteomics 2010, 9, 131. https://doi.org/10.1074/mcp.M900177-MCP200
  8. Burkhart, J. M.; Schumbrutzki, C.; Wortelkamp, S.; Sickmann, A.; Zahedi, R. P. J. Proteomics 2012, 75, 1454. https://doi.org/10.1016/j.jprot.2011.11.016
  9. Proc, J. L.; Kuzyk, M. A.; Hardie, D. B.; Yang, Y.; Smith, D. S.; Jackson, A. M.; Parker, C. E.; Borchers, C. H. J. Proteome Res. 2010, 9, 5422. https://doi.org/10.1021/pr100656u
  10. Xu, F.; Wang, W. H.; Tan, Y. J.; Bruening, M. L. Anal. Chem. 2010, 82, 10045. https://doi.org/10.1021/ac101857j
  11. Wenhong, Z.; Jeffrey, W. S.; Chun-Ming, H. J. Biomed. Biotechnol. 2010, 18, 6.

Cited by

  1. Development of an Automated, High-throughput Sample Preparation Protocol for Proteomics Analysis vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10338
  2. Sample Clean-up Strategies for ESI Mass Spectrometry Applications in Bottom-up Proteomics: Trends from 2012 to 2016 vol.17, pp.20, 2017, https://doi.org/10.1002/pmic.201700011