DOI QR코드

DOI QR Code

Fragmentation Behavior Studies of Chalcones Employing Direct Analysis in Real Time (DART)

  • Motiur Rahman, A.F.M. (Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University) ;
  • Attwa, Mohamed W. (Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University) ;
  • Ahmad, Pervez (Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University) ;
  • Baseeruddin, Mohammad (Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University) ;
  • Kadi, Adnan A. (Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University)
  • Received : 2013.02.23
  • Accepted : 2013.06.20
  • Published : 2013.06.01

Abstract

Chalcones are naturally occurring, biologically active molecules generating interest from a wide range of research applications including synthetic methodology development, biological activity investigation and studying fragmentation patterns. In this article, a series of chalcones has been synthesized and their fragmentation behavior was studied using modern ambient ionization technique Direct Analysis in Real Time (DART). DART ion source connected with an ion trap mass spectrometer was used for the fragmentation of various substituted chalcones. The chalcones were introduced to the DART source using a glass capillary without sample preparation step. All the chalcones showed prominent molecular ion peaks $[M]^{{\cdot}+}$ corresponding to the structures. Multistage mass spectral data $MS^n$ ($MS^2$ and $MS^3$) were collected for all the chalcones studied. The chalcones with substitutions at 3, 4 or 5 positions gave product ion peaks with the loss of a phenyl radical ($Ph^{\cdot}$) by radical initiated ${\alpha}$-cleavage, while substitution at 2 position of chalcone in the A-ring gave a product ion peak with the loss of substituted styryl radical (PhCH = $CH^{\cdot}$). In case of the chalcones with the substituent at 4 positions in A and B rings gave both types of fragmentation patterns. In conclusion, chalcones can be easily characterized using modern DART interface in very short time and efficiently without any cumbersome sample pretreatment.

Keywords

References

  1. Harzdina, G. Plant Polyphenols: Synthesis, Properties and Significance, Plenum press, New York, 1991, pp. 61-72.
  2. Zhang, J.; Brodbelt, J. S. J. Mass Spectrom. 2003, 38, 555. https://doi.org/10.1002/jms.472
  3. Zhang, Y.; Zhang, P.; Cheng, Y. J. Mass Spectrom. 2008, 43, 1421. https://doi.org/10.1002/jms.1423
  4. Bankova, V. S.; Mollova, N. N.; Popov, S. S. Organic Mass Spectrometry 1986, 21, 116.
  5. Tai, Y.; Pei, S.; Wan, J.; Cao, X.; Pan, Y. Rapid Commun. Mass Spectrom. 2006, 20, 994. https://doi.org/10.1002/rcm.2404
  6. Hoffmann, B.; Holzl, J. Phytochemistry 1989, 28, 247. https://doi.org/10.1016/0031-9422(89)85049-6
  7. Redl, K.; Davis, B.; Bauer, R. Phytochemistry 1992, 32, 218. https://doi.org/10.1016/0031-9422(92)80140-A
  8. Prasain, J. K.; Tezuka, Y.; Li, J. X.; Tanaka, K.; Basnet, P.; Dong, H.; Namba, T.; Kadota, S. Tetrahedron 1997, 53, 7833. https://doi.org/10.1016/S0040-4020(97)00474-2
  9. Bajpai, V.; Sharma, D.; Kumar, B.; Madhusudanan, K. P. Biomedical Chromatography 2010, 24, 1283. https://doi.org/10.1002/bmc.1437
  10. Vaclavik, L.; Cajka, T.; Hrbek, V.; Hajslova, J. Anal. Chim. Acta 2009, 645, 56. https://doi.org/10.1016/j.aca.2009.04.043
  11. Gu, H.; Pan, Z.; Xi, B.; Asiago, V.; Musselman, B.; Raftery, D. Anal. Chim. Acta 2011, 686, 57. https://doi.org/10.1016/j.aca.2010.11.040
  12. Zhou, M.; McDonald, J. F.; Fernández, F. M. J. Am. Soc. Mass Spectrom. 2010, 21, 68. https://doi.org/10.1016/j.jasms.2009.09.004
  13. Vaclavik, L.; Zachariasova, M.; Hrbek, V.; Hajslova, J. Talanta 2010, 82, 1950. https://doi.org/10.1016/j.talanta.2010.08.029
  14. Wood, J. L. Drug Testing and Analysis 2011, 3, 345. https://doi.org/10.1002/dta.293
  15. Self, R. L.; Wu, W.-H. Food Control 2012, 25, 13. https://doi.org/10.1016/j.foodcont.2011.10.013
  16. Chernetsova, E. S.; Morlock, G. E.; Revelsky, I. A. Russian Chemical Reviews 2011, 80, 235. https://doi.org/10.1070/RC2011v080n03ABEH004194
  17. Zhang, J.; Huo, F.; Zhou, Z.; Bai, Y.; Liu, H. Progress in Chemistry 2012, 24, 101.

Cited by

  1. Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure–activity relationship study of pyrazoline derivatives: An ATP-competitive human topoisomerase IIα catalytic inhibitor vol.24, pp.8, 2016, https://doi.org/10.1016/j.bmc.2016.03.017
  2. Synthesis and Fragmentation Behavior Study of n-alkyl/benzyl Isatin Derivatives Present in Small/Complex Molecules: Precursor for the Preparation of Biological Active Heterocycles vol.6, pp.3, 2015, https://doi.org/10.5478/MSL.2015.6.3.65
  3. Spatial localisation of curcumin and rapid screening of the chemical compositions of turmeric rhizomes (Curcuma longa Linn.) using Direct Analysis in Real Time-Mass Spectrometry (DART-MS) vol.173, 2015, https://doi.org/10.1016/j.foodchem.2014.10.049