• Title/Summary/Keyword: 분무냉각

Search Result 112, Processing Time 0.025 seconds

Effects of Micro-fin Structure on Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region (강제대류 및 핵비등영역에 있어서 마이크로 휜 형상이 분무냉각 열전달에 미치는 영향)

  • Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.983-990
    • /
    • 2010
  • In the present study, spray cooling heat transfer was experimentally investigated for the case in which water is sprayed onto the surfaces of micro-fins in forced convection and nucleate boiling regions. The experimental results show that an increase in the droplet flow rate improves heat transfer due to forced convection and nucleate boiling in the both case of smooth surface and surfaces of micro-fins. However, the effect of subcooling for fixed droplet flow rate is very weak. Micro-fins surfaces enhance the spray cooling heat transfer significantly. In the dilute spray region, the micro-fin structure has a significant effect on the spray cooling heat transfer. However, this effect is weak in the dense spray region. A previously determined correlation between the Nusselt number and Reynolds number shows good agreement with the present experimental data for a smooth surface.

Correlation of Droplet Flow Rate and Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region (강제대류 및 핵비등영역에 있어서 액적유량과 분무냉각 열전달의 상관관계에 관한 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.143-148
    • /
    • 2008
  • In the present study, the correlation between the Nusselt number and Reynolds number was developed for forced convection and nucleate boiling region in spray cooling. Also the effect of droplet subcooling on spray cooling heat transfer was investigated. Full cone spray nozzles were employed for spray cooling experiment, and water and FC-77 were used for developing the correlation. From the experimental results, the correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30%$ error for water and FC-77.

  • PDF

Study on Boiling Heat Transfer of FC-77 in Spray Cooling (FC-77의 분무냉각 비등열전달 특성에 관한 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2007
  • The boiling heat transfer was experimentally investigated for the FC-77 sprays impacting a square heated test surface in a downward direction. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made under the test conditions of $Q=3.32{\times}10^{-6}{\sim}2.30{\times}10^{-5}\;m^3/s$, ${\Delta}T_{sub}=20{\sim}70^{\circ}C$. Also, heat transfer measurements were made using the copper block of $10{\times}10\;mm^2$ test area heated by nine cartridge heater. From the experimental results, correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30%$ error for FC-77.

  • PDF

Experimental Study on Spray Cooling Heat Transfer of Micro-Fins Surfaces (마이크로 휜 표면의 분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.178-183
    • /
    • 2009
  • Spray cooling heat transfer was experimentally investigated for water sprays impacting on mico-fins structured surfaces in the single phase and nucleate boiling regions. The heat transfer surfaces consist of cubic fins and triangular grooved fins. The spray produced using full cone spray nozzles, and experiments were made under the test condition of $Q=4.92{\times}10^{-6}{\sim}15.83{\times}10^{-6}\;m^3/s$, $T_f=35{\sim}55^{\circ}C$. From the experimental results, it was found that cubic fins surface had the largest heat flux enhancement relative to the smooth surface.

  • PDF

Effect of Injector Cooling on Ignition of Cryogenic Spray (분사기 냉각이 초저온 분무의 점화에 미치는 영향)

  • Kim, Do-Hun;Lee, Jin-Hyuk;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The cooling of a injector effects on the vapor pressure of cryogenic oxidizer spray, and it decides the phase transition point at the ignition process, when the combustion chamber pressure increases drastically. The phase transition of oxidizer spray affects the ignition characteristics, and several ignition tests with the LOx/$GCH_4$ uni-element coaxial swirl injector was performed in the different initial temperatures of oxidizer injector, in order to investigate the effect of injector cooling on the ignition transient characteristics. At the transition point of oxidizer phase, where the combustion chamber pressure increased over the LOx vapor pressure, the temporary quenching phenomenon of the flame occurred. The lower temperature of chilled down injector and tubing tends to move up the phase transition earlier.

Experimental Study on Film Boiling Heat Transfer of Spray Cooling for Inclined heat transfer Surface (경사면에서의 분무냉각 막비등 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The film boiling heat transfer was experimentally investigated for the water sprays impacting on an inclined hot surface. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made for different inclination angles of $\theta=0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$. The experimental results show that, in the downstream region of the inclined hot surface, increasing the inclination angle increases the local heat flux slowly because of increasing the number of rebound droplets. However, the inclination angle of heat transfer surface had no remarkable effect on the local heat flux of spray cooling under the present test conditions.

Experimental Study on Boiling Heat Transfer of PF-5052 in Spray Cooling (PF-5052의 분무냉각 비등열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.938-944
    • /
    • 2008
  • The boiling heat transfer was experimentally investigated for the PF-5052 sprays impacting a square heated test surface in a downward direction. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made under the test conditions of Q=$3.32{\time}10^{-6}{\sim}\;12.98{\time}10^{-6}m^3/s$, ${\Delta}T_{sub}=5{\sim}25^{\circ}C$. Also, heat transfer measurements were made using the copper block of $10{\time}10mm^2$ test area heated by nine cartridge heater. From the experimental results, correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30$ % error for PF-5052.

1-D Analysis for Water Spray Cooling of Exhaust Gas in Combustor Test Facility (물 분무를 이용한 연소가스 냉각 1차원 해석)

  • Im, Ju Hyun;Kim, Myung Ho;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The cooling of hot exhaust gas is an important issue for the construction of combustor test facility. Water spray is an effective method for exhaust gas cooling due to its large latent heat in process of evaporation. In this study, 1-D analysis has been performed based on continuity, energy conservation, and saturated vapor property to understand water spray cooling of combustion gas. In the exhaust duct of combustor test facility, the injected water decreases combustion gas temperature, and evaporates in the combustion gas. However, some of the injected water is collected in the sump due to condensation. The evaporation of water helps combustion gas cooling, but causes pressure increase inside the exhaust duct due to increase of vapor pressure. These phenomena has been analyzed by 1-D modeling in this study. From 1-D analysis, the adequate mass flow rate of water spray to cool combustion gas and to avoid excessive pressure rise inside the exhaust duct has been decided.

A Study on the High Temperature Region Heat Transfer Coefficients for the Spray Cooling of Hot Flat Plates (평판 분무냉각 시의 고온역 열전달계수에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, experiments investigating the high-temperature region heat transfer coefficients for the spray cooling of hot flat plates were performed by down spray water using flat spray nozzles. The heat transfer surface is made of copper and is 100mm in length and 40mm in width and 15mm in thickness. The experimental condition of spray are as follows: temperatures of the water droplets are T=20~$80^{\circ}C$ and droplets volume fluxes are D=0.001565~0.010438$m^3/m^2s$. Next, correlating equations for the heat transfer characteristics of spray cooling in the high temperature region are developed from the effects of droplets volume flux and the surface temperature of heat transfer plate.

  • PDF

The Experimental Study on Mist Cooling Heat Transfer (초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.