DOI QR코드

DOI QR Code

Circular Path Generation Technique for Ball Bar Measurement by Simultaneous Movement of Two Axes

2 축 동시구동을 통한 볼바 측정용 원호경로 생성 방법

  • Lee, Dong-Mok (Institute of Mechanical Engineering Technology, Kyungpook Nat'l Univ.) ;
  • Lee, Hoon-Hee (School of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Yang, Seung-Han (School of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • Received : 2012.12.20
  • Accepted : 2013.03.28
  • Published : 2013.06.01

Abstract

Circular path generation for ball bar measurement using the simultaneous movement of two axes with at least one rotary axis requires the execution of CAM software. However, a change in the machine type or measurement condition requires a new execution of the CAM software, which is cumbersome. This paper presents a circular path generation technique that does not require CAM software and is applicable to different types of driving axes with an arbitrary structural configuration of machine tools and any ball bar setup condition. Mathematical equations are derived for three cases using the proposed technique. In addition, to inspect the measurement feasibility for avoiding physical interference among the ball bar parts, a tilting angle calculation is proposed. The validity of the proposed technique was verified by performing a ball bar experiment with A and C as the simultaneous axes of a five-axis machine tool.

5 축 공작기계에서 회전축을 포함한 동시 구동에 대한 볼바 측정용 원호 경로 생성 및 NC 데이터 작성은 CAM 소프트웨어를 사용할 경우 공작기계의 구조, 사용되는 동시 구동축 종류 및 볼바 셋업 조건 등 다양한 시스템 구조와 변경된 측정 환경에 따라 매번 많은 시간과 노력을 수반해야 한다. 본 연구는 소프트웨어의 의존 없이 다양한 볼바 측정 조건에서도 항상 사용할 수 있는 두 축 동시 구동을 통한 원호 경로를 생성하는 기법을 소개하며 임의의 공작기계의 구조 및 동시 구동축의 종류, 볼바 셋업조건 등을 고려한다. 제안한 원호 생성 기술을 이용하여 세 가지의 사례에 대한 원호 경로 생성용 수학식을 제시하며 더불어 볼바 부품간 물리적 간섭을 방지하기 위한 측정 가능성 사전 검사 방법을 제안한다. 제안한 기법의 타당성은 두 개의 회전축을 이용한 볼바 측정 실험을 통해서 검증한다.

Keywords

References

  1. Hong, C., Ibaraki, S. and Matsubara, A., 2011, "Influence of Position-Dependent Geometric Errors of Rotary Axes on a Machining Test of Cone Frustum by Five-Axis Machine Tools," Precision Engineering, Vol. 35, No. 1, pp.1-11. https://doi.org/10.1016/j.precisioneng.2010.09.004
  2. Uddin, M. S., Ibaraki, S., Matsubara, A. and T. Matsushita, 2009, "Prediction and Compensation of Machining Geometric Errors of Five-axis Machining Centers with Kinematic Errors," Precision Engineering, Vol. 33, No. 2, pp.194-201. https://doi.org/10.1016/j.precisioneng.2008.06.001
  3. Ihara, Y., Lin, S., Kakino, Y. and Ahmad, Z.A., 1998, "Analysis of the Motion Accuracy of 5-Axis Controlled Machining Centers Using DBB Method," International Journal of the Japan Society for Precision Engineering, Vol. 32, No. 3, pp. 188-1983.
  4. Mayer, J. R. R., Mir, Y. A. and Fortin, C., 2000, "Calibration of a Five-Axis Machine Tool for Position Independent Geometric Error Parameters Using a Telescoping Magnetic Ball Bar," Proceedings of the 33rd International MATADOR Conference 2000, pp. 275-280.
  5. Lee, D. M., Zhu, Z., Lee, K. I. and Yang, S. H., 2011, "Identification and Measurement of Geometric Errors for a Five-axis Machine Tool with a Tilting Head Using a Double Ball Bar," International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 2 , pp.337-343. https://doi.org/10.1007/s12541-011-0044-5
  6. Tsutsumi, M. and Saito, A., 2004, "Identification of Angular and Positional Deviations Inherent to 5-axis Machining Centers with a Tilting-rotary Table by Simultaneous Four-axis Control Movements," International Journal of Machine Tools and Manufacture, Vol. 44, No. 12-13, pp. 1333-1342. https://doi.org/10.1016/j.ijmachtools.2004.04.013
  7. Lee, K. I., Lee, D. M. and Yang, S. H., 2012, "Parametric Modeling and Estimation of Geometric Errors for a Rotary Axis using Double Ball bar," International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-011-3834-0.
  8. Liang, H., Hong, H. and Svoboda, J., 2002, "A Combined 3D Linear and Circular Interpolation Technique for Multi-axis CNC Machining," ASME Journal of Manufacturing Science and Engineering, Vol. 124, No. 2, pp. 305-312. https://doi.org/10.1115/1.1445154
  9. Bohez, E., Makhanov, S.S. and Sonthipermpoon, K., 2000, "Adaptive Non-linear Tool Path Optimization Technique for Five-axis Machining," International Journal of Production Research, Vol. 38, No. 17, pp. 4329-4343. https://doi.org/10.1080/00207540050205127
  10. Sorby, K., 2007, "Inverse Kinematics of Five-axis Machines Near Singular Configurations," International Journal of Machine Tools & Manufacture, Vol. 47, No. 2, pp. 299-306. https://doi.org/10.1016/j.ijmachtools.2006.03.011
  11. Lei, W. T., Sung, M. P., Liu, W. L. and Chuang, Y. C., 2007, "Double Ballbar Test for the Rotary Axes of Five-axis CNC Machine Tools," International Journal of Machine Tools & Manufacture, Vol.47, No. 2, pp.273-285. https://doi.org/10.1016/j.ijmachtools.2006.03.012
  12. Tsutsumi, M., Yumiza, D., Utsumi, K. and Sato, R., 2007, "Evaluation of Synchronous Motion in Five-axis Machining Centers With a Tilting Rotary Table," Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 1, pp. 24-35. https://doi.org/10.1299/jamdsm.1.24
  13. Manato, K. and Ihara, Y., 2007, "Ball Bar Measurement of Five-axis Conical Movement," Lamdamap 2007, Vol.7, pp. 34-43.
  14. Renishaw, 2010, QC20-W Wireless Ballbar System Description and Specifications.
  15. Lee, J. H., Yang, S. H., 2005, "Measurement of Geometric Errors in a Miniaturized Machine Tool Using Capacitance Sensors," Journal of Materials Processing Technology, Vol. 164-165, pp. 1402-1409. https://doi.org/10.1016/j.jmatprotec.2005.02.073