DOI QR코드

DOI QR Code

Experimental Investigation of Fatigue Crack Growth Behavior in Friction Stir Welded 7075-T651 Aluminum Alloy Joints under Constant Stress Intensity Factor Range Control Testing (For LT Orientation Specimen)

일정 응력확대계수범위 제어 시험하의 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파 거동의 실험적 고찰 (LT 방향의 시험편에 대하여)

  • Jeong, Yeui Han (Dept. of Mechanical Design Engineering, Graduate School, Pukyong Nat'l Univ.) ;
  • Kim, Seon Jin (Dept. of Mechanical & Automotive Engineering, Pukyong Nat'l Univ.)
  • 정의한 (부경대학교 기계설계공학과) ;
  • 김선진 (부경대학교 기계자동차공학과)
  • Received : 2012.12.28
  • Accepted : 2013.03.06
  • Published : 2013.06.01

Abstract

In this study, as a series of studies aimed at investigating the spatial randomness of fatigue crack growth for friction stir welded (FSWed) 7075-T651 aluminum alloy joints, the fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy joints was investigated for LT orientation specimens. Fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control for 5 specimens of the FSWed 7075-T651 aluminum alloy, including base metal (BM), heat affected zone (HAZ), and weld metal (WM) specimens. The mean fatigue crack growth rate of WM specimens was found to be the highest, whereas that of HAZ and WM specimens was the lowest. Furthermore, the variability of fatigue crack growth rate was found to be the highest in WM specimens and lowest in BM specimens.

본 연구에서는 마찰교반용접재의 피로균열전파 거동의 공간적 불규칙성을 고찰하기 위한 연구의 일환으로써, 최적의 조건에서 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 LT-방향의 각각 5개의 피로균열전파 시험편에 대하여 일정 응력확대계수범위 제어하의 피로균열전파 실험을 수행하여 마찰교반용접부의 교반용접부재(WM)와 열영향부재(HAZ) 그리고 모재(BM)에 대한 피로균열전파 거동을 실험적으로 고찰하였다. WM재의 피로균열전파율이 가장 빠르게 나타났으며, 그 다음 HAZ재와 WM재 순으로 나타났다. 게다가 시험편간 피로균열전파율의 변동성은 WM시험편에서 가장 높았고, 반면 BM재에서 가장 낮게 나타났다.

Keywords

References

  1. Shtrikman, M. M., 2008, "Current State and Development of Friction Stir Welding," Welding International, Vol. 22, No. 11, pp. 806-815. https://doi.org/10.1080/09507110802593620
  2. Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Templesmith, P. and Dawes, C. J., 1991, "Friction-Stir Butt Welding," GB Patent No. 9125978.8, International Patent Application No. PCT/GB92/02203.
  3. Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Templesmith, P. and Dawes, C. J., 1995, U. S. Patent No. 5460317.
  4. Mishra, R. S. and Ma, Z .Y., 2005, "Friction Stir Welding and Processing," Materials Science and Engineering R 50, pp. 1-78. https://doi.org/10.1016/j.mser.2005.07.001
  5. Fuller, C. B., Mahoney, M. W., Calabrese, M. and Micona, L., 2010, "Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds," Materials Science and Engineering A 527, pp. 2233-2240. https://doi.org/10.1016/j.msea.2009.11.057
  6. Friction Welding Working Group, 2006, "Friction Welding Technology," Ilgangonhupshi munsa, pp. 176-264.
  7. Kim, C. O. and Kim, S. J., 2011, "Effects of Welding Condition on Tensile Properties of Friction Stir Welded Joints of Al-7075-T651 Plate," KSPSE, Vol. 15, No. 2, pp. 61-68.
  8. Kim, C. O., Sohn, H. J. and Kim, S. J., 2011 "Effects of Welding Condition on Hardness and Microstructure of Friction Stir Welded Joints of Al-7075-T651 Plate," KSPSE, Vol. 15, No. 3, pp. 58-64. https://doi.org/10.9726/kspse.2011.15.3.058
  9. Biallas, G., Braun, R., Donne, C. D., Staniek, G. and Kaysser, W. A., 1999, in "Proceedings of the First International Symposium on Friction Stir Welding," Thousand Oaks, Ca, USA, June 14-16.
  10. Pao, P. S., Lee, E., Feng, C. R., Jones, H. N. and Moon, D. W., 2003, in "Friction Stir Welding and Processing II," TMS, Warrendale, PA, USA.
  11. Pao, P. S., Gill, S. J., Feng, C. R. and Sankaran, K. K., 2011, "Corrosion-Fatigue Crack Growth in Friction Stir Welded Al7050," Scripta Materialia, Vol. 45, pp. 605-612.
  12. Bussu, G. and Irving, P. E., 2003, "The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminium Joints," International Journal of Fatigue, Vol. 23, pp. 77-88.
  13. John, R., Jata, K. V. and Sadananda, K., 2003, "Residual Stress Effects on Near-threshold Fatigue Crack Growth in Friction Stir Welds in Aerospace Alloys," International Journal of Fatigue, Vol. 25, pp. 939-948. https://doi.org/10.1016/j.ijfatigue.2003.08.002
  14. Hatamleh, O., Lyons, J. and Forman, R., 2007, "Laser and Shot Peening Effects on Fatigue Crack Growth in Friction Stir Welded 7075-T7351 Aluminum Alloy Joints," International Journal of Fatigue, Vol. 29, pp. 421-434. https://doi.org/10.1016/j.ijfatigue.2006.05.007
  15. Kim, S. S., Lee, C. G. and Kim, S. J., 2008, "Fatigue Crack Propagation Behavior of Friction Stir Welded 7083-H31 and 6061-T651 Aluminum Alloys," Materials Science and Engineering A 478, pp. 56-64. https://doi.org/10.1016/j.msea.2007.06.008
  16. Pouget, G. and Reynolds, A. P., 2008, "Residual Stress and Microstructure Effects on Fatigue Crack Growth in AA2050 Friction Stir Welds," International Journal of Fatigue, Vol. 30, pp. 463-472. https://doi.org/10.1016/j.ijfatigue.2007.04.016
  17. Moreira, P. M. G. P., de Jesus, A. M. P. Ribeiro, A. S. and de castro, P. M .S. T., 2008, "Fatigue Crack Growth Friction Stir Welds of 6082-T6 and 6061-T6 Aluminium Alloy: A Comparison," Theoretical and Applied fracture Mechanics, Vol. 50, pp. 81-91. https://doi.org/10.1016/j.tafmec.2008.07.007
  18. Fratini, L., Pasta, S. and Reynolds, A. P., 2009, "Fatigue Crack Growth in 2024-T351 Friction Stir Welded Joints: Longitudinal Residual Stress and Microstructural Effects," International Journal of Fatigue, Vol. 31, pp. 495-500. https://doi.org/10.1016/j.ijfatigue.2008.05.004
  19. Hatamleh, O., 2009, "A Comprehensive Investigation on the Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welded AA 2195 Joints," International Journal of Fatigue, Vol. 31, pp. 974-988. https://doi.org/10.1016/j.ijfatigue.2008.03.029
  20. Benedetti, M., Beghini, M., Fontanari, V. and Monelli, B., 2008, "Fatigue Cracks Emanating from Sharp Notches in High-Strength Aluminium Alloys: The Effect of Loading Direction, Kinking, Notch Geometry and Microstructure," International Journal of Fatigue, Vol. 31, pp. 1996-2005.
  21. Lemmem, H. J. K., Alderliesten, R. C. and Benedictus, R., 2011, "Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded Aluminum Joints," Engineering Fracture Mechanics, Vol. 78, pp. 930-943. https://doi.org/10.1016/j.engfracmech.2011.01.018
  22. Schubbe, J. J., 2009, "Fatigue Crack Propagation in 7050-T7451 Plate Alloy," Engineering Fracture Mechanics, Vol. 76, pp. 1037-1048. https://doi.org/10.1016/j.engfracmech.2009.01.006
  23. Maduro, L. P., Baptista, C. A. R. P., Torres, M. A. S. and Souza, R. C., 2011, "Modeling the Growth of LT and TL-oriented Fatigue Cracks in Longitudinally and Transversely pre-strained Al 2524-T3 Alloy," Engineering Procedia, Vol. 10, pp. 1214-1219. https://doi.org/10.1016/j.proeng.2011.04.202
  24. Tra, T. H., Okazaki, M. and Suzuki, K., 2012, "Fatigue Crack Propagation Behavior in Friction Stir Welding of AA6063-T5: Roles of Residual Stress and Microstructure," International Journal of Fatigue, Vol. xx, 2012, Accepted 4 Feb. 2012 https://doi.org/10.1016/j.ijfatigue.2012.02.003
  25. Kim, C. O., Sohn, H. J. and Kim, S. J., 2011, "Friction Stir Welding of 7075-T651 Auminum Plates and Its fatigue Crack Growth Property," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 10, pp. 1347-1353. https://doi.org/10.3795/KSME-A.2011.35.10.1347
  26. Kusko, C. S., Dupont, J. N. and Marder, A. R., 2004, "The Influence of Microstructure on Fatigue Crack Propagation Behavior of Stainless Steel Welds," Welding Journal, January, 2004, pp. 6-14.
  27. Paris, P. C. and Erdogan, F., 1963, "A Critical Analysis of Crack Growth Propagation," Trans, ASME J. Basic Eng. Vol. 85, pp. 528-534. https://doi.org/10.1115/1.3656900

Cited by

  1. Spatial Randomness of Fatigue Crack Growth Rate in Friction Stir Welded 7075-T651 Aluminum Alloy Welded Joints (Case of LT Orientation Specimen) vol.37, pp.9, 2013, https://doi.org/10.3795/KSME-A.2013.37.9.1109
  2. Effect of Specimen Orientation on Fatigue Crack Growth Behavior in Friction Stir Welded Al7075-T651 Joints vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-A.2014.38.12.1317
  3. Effect of Initial Crack Location on Spatial Randomness of Fatigue Crack Growth Resistance in Friction Stir Welded AA7075-T651 Plates vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-A.2014.38.9.999