• Title/Summary/Keyword: 탄성파속도

Search Result 524, Processing Time 0.029 seconds

Inversion of SAW Dispersion Data to Determine the Elastic Constants of a Thin film (표면파속도와 역산법에 의한 박막탄성계수 산출)

  • 김진오
    • Journal of the KSME
    • /
    • v.34 no.7
    • /
    • pp.510-516
    • /
    • 1994
  • 탄성파의 속도는 파동 전파 매질의 밀도와 탄선계수에 달려 있으므로, 박막이 입혀진 기판에서 전파하는 표면파에 대해서 기판과 박막의 밀도와 탄성계수 및 박막의 두께 등을 알면 전파 속 도를 계산할 수 있다. 박막의 탄성계수를 모르는 경우에는 표면파 속도를 측정하여 역으로 탄 성계수를 산출할 수 있다. 이러한 역산과정에는 일반적인 비선형 방정식의 curve-fitting에 이용될 수 있는 simplex법이 효율적으로 활용된다. 이 글에서는 표면파 속도를 측정하고 그 데이터로 부터 역산하여 박막의 탄성계수를 구하는 원리와 과정을 설명한다.

  • PDF

Comparison in Elastic Wave Propagation Velocity Evaluation Methods (탄성파의 매질 내 이동속도 산정방법 비교)

  • Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.31-37
    • /
    • 2014
  • In situ investigations and laboratory tests using elastic wave have become popular in geotechnical and geoenvironmental engineering. Propagation velocity of elastic wave is the key index to evaluate the ground characteristics. To evaluate this, various methods were used in both time domain and frequency domain. In time domain, the travel time can be found from the two points that have the same phase such as peaks or first rises. Cross-correlation can also be used in time domain by evaluating the time shift amount that makes the product of signals of input and received waveforms maximum. In frequency domain, wave propagation velocity can be evaluated by computing the phase differences between the source and received waves. In this study, wave propagation velocity evaluated by the methods listed above were compared. Bender element tests were conducted on the specimens cut from the undisturbed hand-cut block samples obtained from Block 37 excavation site in Chicago, IL, US. The evaluation methods in time domain provides relatively wide range of wave propagation velocities due to the noise in signals and the sampling frequency of data logger. Frequency domain approach provides relatively accurate wave propagation velocities and is irrelevant to the sampling frequency of data logger.

Study of seismic wave propagation around tunnel (터널 주위의 탄성파 전파양상에 관한 연구)

  • Suh, Baek-Su;Oh, Seok-Hoon;Shon, Kwon-Ik;Lee, Sang-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.291-296
    • /
    • 2006
  • The aspect of wave propagation around cavity was investigated for the exact inversion of crosshole tomography data in order to understand the possibility of the existence of underground cavity. We found that the adequate frequency range for the tunnel investigation was about 2kHz to 5kHz, and the grid space was set up to 1/10 length of wavelength. The propagation of the seismic wave near the cavity may go through or detour the cavity according to the seismic velocity of inside of cavity. The detouring wave propagates with the seismic velocity of mother rock in spite of the velocity of inside of cavity. The smaller the velocity difference between the mother rock and cavity, the more frequent penetration of the seismic wave through the cavity was appeared.

  • PDF

A Study of Seismic Wave Propagation for Tunnel Exploration (터널 탐사를 위한 탄성파 전파 양상에 관한 연구)

  • Suh, Baek-Soo;Oh, Seok-Hoon;Sohn, Kwon-Ik
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.539-547
    • /
    • 2006
  • The activity of the seismic wave propagation around the cavity is investigated for the exact inversion of the crosshole tomography data, in order to understand the possibility of the existence inside the underground cavity. It is found that the adequate frequency range for the tunnel investigation is about 2 kHz to 5 kHz, and the grid space should be set up to 1/10 of the wavelength. The propagation of the seismic wave near the cavity may go through or detour the cavity according to the seismic velocity inside the cavity. The detouring wave propagates with the seismic velocity of mother rock in spite of the velocity of inside of the cavity. The smaller the velocity difference is between the mother rock and cavity, the more frequent penetration of the seismic wave through the cavity appears.

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Development and Application of a Source for Crosshole Seismic Method to Determine Body Wave Velocity with Depth at Multi-layered Sites (다층 구성 부지에서의 깊이별 실체파 속도의 결정을 위한 시추공간 탄성파 탐사 발진 장치 개발 및 적용)

  • Sun, Chang-Guk;Mok, Young-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.193-206
    • /
    • 2006
  • Among various borehole seismic testing techniques for determining body wave velocity, crosshole seismic method has been known as one of the most suitable technique for evaluating reliably geotechnical dynamic properties. In this study, to perform successfully the crosshole seismic test for rock as well as soil layers regardless of the groundwater level, multi-purposed spring-loaded source which impact horizontally a subsurface ground in vertical borehole was developed and applied at major facility sites in Korea. The geotechnical dynamic properties were evaluated by determining efficiently the body wave velocities such as shear wave velocity and compressional wave velocity from the horizontally impacted crosshole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation and seismic design of the target facilities.

On the Evaluation of Construction Standards Based on Seismic Velocities Obtained In-Situ and through Laboratory Rock Tests (현장 및 실내 측정 탄성파 속도에 근거한 암반평가 기준에 대한 고찰)

  • Lee, Kang Nyeong;Park, Yeon Jun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.230-242
    • /
    • 2017
  • Seismic velocities measured from in-situ tests (n=177) and through rock core samples (n=1,035) are reviewed in light of construction standards, widely used standards as a first-hand approximation of rock classification solely based on seismic velocities. In-situ down hole tests and refraction survey for soft rocks showed seismic velocities of 1,400~2,900 m/s which is faster than those specified in construction standards. For moderate~ hard rocks, in-situ down hole tests and refraction survey showed 2,300~3,800 m/s which roughly corresponds with the range specified in the construction standards. A similar trend is also observed for seismic velocities measured from rock core samples. The observed differences between construction standards and seismic velocities can be explained in two ways. If construction standards are correct the observed differences may be explained with seismic velocities affected by underlying fast velocities and also possibly with selection of intact cores for velocity measurement. Alternatively, construction standards may have intrinsic problems, namely artificial discrete boundaries between soft rocks and moderate rocks, application of foreign standards without consideration of geologic setting and lack of independent verification steps. Therefore, we suggest a carefully designed verification studies from a test site. We also suggest that care must be exercised when applying construction standards for the interpretation and accessment of rock mass properties.

A tunnel rock mass classification technique and its applicability using electrical resistivity and seismic wave velocity (전기비저항 및 탄성파속도를 이용한 터널암반의 정량적 평가수법과 적용성)

  • Park, Sam-Gyu;Kim, Jung-Ho;Cho, Seong-Jun;Yi, Myeong-Jong;Son, Jeong-Sul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.291-299
    • /
    • 2003
  • Electrical resistivity prospecting has been recently increased in the application to tunnel, landslide and other investigations in the civil engineering field. Therefore, it is essential to establish the rock mass classification technique using electrical resistivity data. In this paper, the authors, try to propose a technique which can classify tunnel rock mass using seismic wave velocities derived from electrical resistivity data. In addition, the applicability of the proposed tunnel rock mass classification technique is discussed, by comparing estimated support patterns with actually performed ones.

  • PDF

Experimental Study on the Damage of Concrete Material by Impact Load (충격 하중에 의한 콘크리트 재료의 손상에 관한 실험적 연구)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.26-32
    • /
    • 2009
  • Although the number of blasting operations in urban area are growing, lesser attentions have been paid to the effects of impact load on nearby concrete structures. In this study, the properties of concrete were obtained by both the sonic velocity and Schmidt rebound tests, and the degree of damage in concrete material was evaluated by measuring the sonic velocity in sample before and after applying the impact load. The test results shows that the sonic velocity decreases with the increase of intensity of impact load, and the degree of damage in concrete samples is lower when the samples have higher strength and sonic velocity.

Relationship between lithology and rock physical property using borehole prospecting (시추공 물리탐사를 통한 지반물성과 암상과의 상관성 분석)

  • 송무영;김환석;박종오
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.127-135
    • /
    • 2002
  • The relationship between the seismic velocity and RQD was estimated using the RQD data obtained from the optical borehole image processing and drill core logs and the seismic velocity measured from the PS logging. The seismic velocity and crack aperture show a high correlation in the granite in Yuseong area and banded gneiss in Paldang area. However, such a relationship cannot be found in the sedimentary rock in Sabuk area. In the sedimentary rock of Sabbuk area, the seismic velocity shows widespread distribution especially in the 0∼20mm range of accumulated crack aperture probably because the wide distribution of fracture zone in coaly shale results in the inaccurate measurements of the crack aperture.