Abstract
This study proposes an iterative approach to the estimation of the marginal abatement costs of undesirable outputs by computing the slope of the efficient production possibilities frontier on the basis of the efficient projection points generated by the directional output distance function approach due to Fare et al. (2005) based on duality theory. In case of the latter methodology, the estimated marginal abatement costs differ significantly depending on the choice of the directional output vector. In addition, depending on the curvature of the underlying PPF the efficient projection points may be located at a significant distance away from their actually observed counterparts. While it would be more logical to estimate marginal abatement costs as a PPF slope at a point corresponding to the actually observed emissions level, the methodology based on duality theory is likely to produce unstable results due to the problems associated with applying the theorem of implicit function differentiation. Since our methodology is not based on duality theory, our results are immune to both of these problems. We apply our methodology to a sample of Western European countries for the period of 1995-2011 to illustrate our approach.
기존 연구에서는 이산화탄소의 한계저감비용을 추정할 경우 쌍대성 이론에 근거하여 임의로 설정된 하나의 방향성 벡터(directional vector) 설정하였으나 본 연구에서는 이러한 한계를 극복하고자 다양한 형태의 방향성 벡터를 사용하여 이산화탄소의 한계저감비용을 추정하였다. 기존의 방법론에서는 임의로 설정된 방향성 벡터가 한계저감비용 추정에 결정적인 역할을 하여 선택된 방향성 벡터에 따라 한계저감 비용 추정치가 상당한 차이가 있음을 알 수 있다. 그리고 $45^{\circ}$의 방향성 벡터를 설정하는 경우에는 실제 이산화탄소 배출량 수준과는 다른 배출량 수준에서의 한계저감비용을 추정하게 되지만 본 연구에서 제안한 방법론에 의하여 추정된 한계저감비용은 실제 이산화탄소 배출량 수준에서 한계저감비용을 추정하여 보다 더 현실을 정확하게 반영하는 추정치이다. 새로운 방법론을 서유럽 국가에 적용하여 추정한 이산화탄소의 한계저감비용은 기존 방법론을 사용하는 경우에 비하여 적은 것으로 추정되었다.