DOI QR코드

DOI QR Code

Comparative Study of Performance of Switching Control and Synchronous Notch Filter Control for Active Magnetic Bearings

능동 자기 베어링을 위한 동기 노치필터 제어기와 스위칭 제어기의 성능 비교 연구

  • Yoo, Seong Yeol (Institute of Advanced Transportation and Vehicle Research, Chungnam Nat'l Univ.) ;
  • Noh, Myounggyu (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.)
  • 유승열 (한국해양과학기술원 해양시스템연구부) ;
  • 노명규 (충남대학교 메카트로닉스공학과)
  • Received : 2012.09.13
  • Accepted : 2012.12.03
  • Published : 2013.04.01

Abstract

Switching controllers for active magnetic bearings are claimed to minimize the copper losses because they do not use bias currents. In this study, we compare the performances of the switching controller with those of the widely used proportional-derivative (PD) controller. The PD controller is combined with a synchronous notch filter to reduce the effect of the unbalance disturbance. For a fair and objective comparison, the PD controller is designed systematically. The switching controller is designed so that the dynamics of the two controllers are almost identical. A system model is developed. This model includes the flexible modes of the rotor and the dynamics of the sensors and amplifiers. The simulation results show that the switching controller indeed reduces the copper loss at lower speeds. However, it fails to operate around the speed close to the bending mode of the rotor.

능동 자기베어링의 바이어스 선형화 방법은 자기베어링의 동역학적 성능과 선형성을 확보하지만, 바이어스 전류에 의한 상시 소모전력이 발생하여 시스템의 효율이 저하된다. 반면, 스위칭 제어기는 바이어스 전류를 사용하지 않아 베어링의 소비 전력을 최소화할 수 있다. 본 논문에서는 능동 자기베어링 시스템에 적용되는 스위칭 제어기와 동기 노치필터를 포함하는 비례-미분 제어기의 성능을 비교하였다. 공정하고 객관적인 비교를 위해 기준제어기인 동기 노치필터 제어기를 합리적으로 설계하고, 스위칭 제어기가 기준제어기와 동일한 동역학 특성을 갖도록 하였다. 회전축의 굽힘 유연모드 및 센서와 증폭기의 특성을 포함하는 시스템의 동역학 모델을 수립하고 성능 비교 지표를 수립하였다. 불평형 질량에 응답 측면에서 제어기를 비교하여, 저속 영역에서 스위칭 제어기가 기준제어기 대비 10 배 이상 동손을 저감할 수 있으나, 회전축의 굽힘 유연모드와 일치하는 회전 속도 근방에서는 스위칭 제어기가 유효하지 않음을 확인하였다.

Keywords

References

  1. Schweitzer, G. and Maslen, E. H., eds., 2009, Magnetic Bearings, Springer, New York.
  2. Yoo, S., Kim, W., Kim, S., Lee, W., Bae, Y. and Noh, M., 2011, "Optimal Design of Permanent Magnet Thrust Bearings," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 4, pp. 353-358. https://doi.org/10.3795/KSME-A.2011.35.4.353
  3. Sawicki, J., Maslen, E. and Bischof, K., 2007, "Modeling and Performance Evaluation of Machining Spindle with Active Magnetic Bearings," J. Mech. Sci. Tech., Vol. 21, pp. 847-850. https://doi.org/10.1007/BF03027055
  4. Yoo, S., Lee, W., Bae, Y. and Noh, M., 2010, "Design of Magnetically-Levitated Rotors in a Large Flywheel Energy Storage System from Stability Standpoint," J. Mech. Sci. Tech., Vol. 24, pp. 231-235. https://doi.org/10.1007/s12206-009-1133-6
  5. Maslen, E. H. and Meeker, D. C., 1995, "Fault Tolerance of Magnetic Bearings by Generalized Bias Current Linearization," IEEE Trans. Magn., Vol. 31, pp. 2304-2314 https://doi.org/10.1109/20.376229
  6. Tsiotras, P. and Wilson, B. C., 2003, "Zero-and Low-Bias Control Designs for Active Magnetic Bearings," IEEE Trans. Contr. Syst. Tech., Vol. 11, pp. 889-904. https://doi.org/10.1109/TCST.2003.819593
  7. Sahinkaya, M. N. and Hartavi, A., 2007, "Variable Bias Current in Magnetic Bearings for Energy Optimization," IEEE Trans. Magn., Vol. 43, pp. 1052-1060. https://doi.org/10.1109/TMAG.2006.888731
  8. Sivrioglu, S., Nonami, K. and Saigo, M., 2004, "Low Power Consumption Nonlinear Control with $H_{\infty}$ Compensator for a Zero-Bias Flywheel AMB System," J. Vibration and Control, Vol. 10, pp.1151-1166. https://doi.org/10.1177/1077546304043544
  9. Yoo, S., 2012, A Comparative Study of Power Minimizing Controllers for Active Magnetic Bearings in Flywheel Energy Storage Systems, Ph. D. Dissertation, Chugnam National University.
  10. Herzog, R., Buhler, P., Galher, C. and Larsonneur, R., 1996, "Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings," IEEE Trans. Contr. Sys. Tech., Vol.4, No. 5, pp. 580-586. https://doi.org/10.1109/87.531924
  11. Charara, A., Miras, J. and Caron, B., 1996, "Nonlinear Control of a Magnetic Levitation System Without Premagnetization," IEEE Trans. Contr. Sys. Tech., Vol.4, No.5, pp. 513-523. https://doi.org/10.1109/87.531918
  12. Trumper, D., Olson, S. and Subrahmanyan, P., 1997, "Linearizing Control of Magnetic Suspension Systems," IEEE Trans. Contr. Syst. Tech., Vol. 5, No. 4, pp. 427-438. https://doi.org/10.1109/87.595924
  13. Li, L., 1999, "Linearizing Magnetic Bearing Actuators by Constant Current Sum, Constant Voltage Sum, and Constant Flux Sum," IEEE Trans. Magn., Vol. 35, pp. 528-535. https://doi.org/10.1109/20.737477
  14. ISO Standard 14839-1, Mechanical Vibration - Vibration of Rotating Machinery Equipped with Active Magnetic Bearing: Part 1 Vocabulary, 2002.
  15. Lei, S. and Palazzolo, A., 2008, "Control of Flexible Rotor Systems with Active Magnetic Bearings," J. Sound and Vibration, Vol. 314, pp. 19-38. https://doi.org/10.1016/j.jsv.2007.12.028
  16. Yoo, S., Lee, W., Bae, Y. and Noh, M., 2011, "Optimal Notch Filter for Active Magnetic Bearing Controllers," IEEE/ASME Int. Conf. Adv. Intell. Mechatr. (AIM2011), pp. 707-711.
  17. Nelson, H. and McVaugh, J., 1976, "The Dynamics of Rotor-Bearing Systems Using Finite Elements," ASME J. Eng. Ind., Vol. 98, pp. 593-600. https://doi.org/10.1115/1.3438942
  18. Childs, D., 1993, Turbomachinery Rotordynamics, New York, John Wiley & Sons.
  19. Cloud, C., Li, G., Maslen, E. and Barret, L., 2005, "Practical Applications of Singular Value Decomposition in Rotordynamics," Australian J. Mech. Eng., Vol. 2, pp. 21-32.

Cited by

  1. vol.17, pp.2, 2014, https://doi.org/10.5293/kfma.2014.17.2.073
  2. Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-A.2014.38.9.925
  3. Predictions of Unbalanced Response of Turbo Compressor Equipped with Active Magnetic Bearings through System Identification vol.40, pp.1, 2016, https://doi.org/10.3795/KSME-A.2016.40.1.097