DOI QR코드

DOI QR Code

Biofilter Treatment of Waste Air Containing Malodor and VOC: 2. Transient Behavior of Biofilter with Improved Design to Eliminate Malodor and VOC

악취 및 VOC를 함유한 폐가스의 바이오필터 처리: 2. 개선된 바이오필터설계에 의한 악취 및 VOC 제거거동

  • Lee, Eun Ju (Department of Chemical Engineering, Daegu University, Research Institute for Industrial and Environmental Waste Air Treatment) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University, Research Institute for Industrial and Environmental Waste Air Treatment)
  • 이은주 (대구대학교 화학공학과, 산업 및 환경폐가스연구소) ;
  • 임광희 (대구대학교 화학공학과, 산업 및 환경폐가스연구소)
  • Received : 2013.01.14
  • Accepted : 2013.01.21
  • Published : 2013.02.01

Abstract

In this study, both transient behaviors of a biofilter system with improved design and a conventional biofilter were observed to perform the treatment of waste air containing malodor and volatile organic compound (VOC). Their behaviors of removal efficiency and treated concentration of malodor and VOC were compared each other. During 1st~7th stages of improved biofilter system operation it was observed that the order of treated ethanol concentration at each sampling port was switched due to the difference of microbe-population-distribution in spite of the difference of biofilter effective height. However, at 8th stage of its operation, the order of treated ethanol concentration at each sampling port was consistent to the order of biofilter effective height at each sampling port. The same was applied to the case of hydrogen sulfide, even though the difference of switched treated-hydrogen sulfide-concentrations was less than that of switched treated-ethanol-concentrations. The ethanol-removal efficiency of the biofilter system with improved design was ca. 96%, which was greater by 2% than that of the conventional biofilter. The transient behavior of treated hydrogen sulfide concentration of both biofilters were similar to each other. However, the concentration of hydrogen sulfide treated by the biofilter system with improved design was observed lower than that by the conventional biofilter. The hydrogen sulfide-removal efficiency of the biofilter system with improved design was higher by ca. 2% than that of the conventional biofilter. Therefore, the hydrogen sulfide-removal efficiency of the biofilter system with improved design was observed to be enhanced by the same as its ethanol-removal efficiency.

본 연구에서는 악취 및 휘발성 유기화합물(VOC)를 함유하는 폐가스 처리에 있어서 개선된 바이오필터시스템의 악취 및 VOC의 제거거동 및 제거효율 등을 관찰하고, 전통적 바이오필터의 경우의 악취 및 VOC의 제거거동 및 제거효율 등과 비교하였다. 개선된 바이오필터시스템 운전 1~7단계에서 바이오필터 유효높이 차이에도 불구하고 미생물 population 분포 차이로 인하여, 정해진 시간에 각 단에서 에탄올 농도 순서가 바뀌었다. 반면에 운전 8단계에서 폐가스의 개선된 바이오필터시스템으로의 공급방향들이 바뀌었을 때에 에탄올 농도가 높은 순서는 운전 1~7단계와 다르게 바이오필터의 유효높이가 낮은 순서와 일치하였다. 황화수소 경우도 마찬가지였으나 에탄올 경우와 비교하였을 때에 농도순서가 바뀐 단의 황화수소 농도의 차이는 매우 적었다. 바이오필터 운전 8단계에서 개선된 바이오필터시스템의 에탄올 제거효율은 약 96%로서 전통적 바이오필터반응기의 에탄올 제거효율인 94%보다 약 2% 증가하였다. 개선된 바이오필터시스템 처리가스의 황화수소 농도의 거동은 전통적 바이오필터반응기와 비슷하였으나 황화수소 처리농도가 더 낮았다. 운전 8단계의 개선된 바이오필터시스템의 황화수소제거효율은 전통적 바이오필터반응기의 황화수소 제거효율보다 약 2% 가량 높았다. 따라서 개선된 바이오필터시스템의 제거효율은 에탄올과 황화수소 경우에 전통적 바이오필터반응기보다 각각 2% 제고되었음이 관찰되었다.

Keywords

References

  1. Kennes, C. and Veiga, M. C., "Bioreactors for Waste Gas Treatment," Kluwer Academic Publishers, Dordrecht, The Netherlands( 2001).
  2. Dorado, A. D., Baeza, J. A., Lafuente, J., Gabriel, D. and Gamisans, X., "Biomass Accumulation in Biofilter Treating Toluene at High Loads-Part 1: Experimental Performance from Inoculation to Clogging," Chem. Eng. J., in print(2012).
  3. Ryu, H. W., Cho, K. S. and Chung, D. J., "Relationships Between Biomass, Pressure Drop and Performance in a Polyurethane Biofilter," Bioresour. Technol., 101, 1745-1751(2010). https://doi.org/10.1016/j.biortech.2009.10.018
  4. Znad, H. T., Katoh, K. and Kawase Y., "High Loading Toluene Treatment in a Compost Based Biofilter Using Up-flow and Downflow Swing Operation," J. Hazard. Mater., 141, 745-752 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.039
  5. Hassan, A. A. and Sorial, G., "Biological Treatment of Benzene in a Controlled Trickle Bed Air Biofilter," Chemosphere, 75, 1315- 1321(2009). https://doi.org/10.1016/j.chemosphere.2009.03.008
  6. Dorado, A. D., Lafuente, F. J., Gabriel, D. and Gamisans, X., "The Role of Water in the Performance of Biofilters: Parameterization of Pressure Drop and Sorption Capacities for Common Packing Materials," J. Hazard. Mater., 180, 693-702(2010). https://doi.org/10.1016/j.jhazmat.2010.04.093
  7. Hernandez, J., Prado, O. J., Almarcha, M., Lafuente, J. and Gabriel, D., "Development and Application of a Hybrid Inert/organic Packing Material for the Biofiltration of Composting Off-gases Mimics," J. Hazard. Mater., 178, 665-672(2010). https://doi.org/10.1016/j.jhazmat.2010.01.137
  8. Dan, W., Me, Q., Yazhi, Z. and Chen, S., "Removal of p-xylen from An Air Stream in a Hybrid Filter," J. Hazard. Mater., 136, 288-295(2006). https://doi.org/10.1016/j.jhazmat.2005.12.017
  9. Lee, E. J. and Lim, K.-H., "Biofilter Treatment of Waste Air Containing Malodor and VOC: 1. Pressure Drop and Microbepopulation Distribution of Biofilter with Improved Design," Korean Chem. Eng. Res.(HWAHAK KONGHAK), in print (2013).
  10. Lim, K.-H. and Park, S. W., "The Treatment of Waste-air Containing Mixed Solvent Using a Biofilter: 1. Transient Behavior of Biofilter to Treat Waste-air Containing Ethanol," Korean J. Chem. Eng., 21(6), 1161-1167(2004). https://doi.org/10.1007/BF02719488