DOI QR코드

DOI QR Code

Effect of Polyhedral Oligomeric Silsesquioxane on Cure Characterization of an Epoxy/Amine System

에폭시/아민계의 경화 특성에 미치는 Polyhedral Oligomeric Silsesquioxane의 영향

  • Gu, Puzhong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 구푸종 (금오공과대학교 고분자공학과) ;
  • 이종근 (금오공과대학교 고분자공학과)
  • Received : 2012.07.25
  • Accepted : 2012.09.10
  • Published : 2013.01.25

Abstract

The glass transition temperature ($T_g$) and conversion (${\alpha}$) were measured for a diglycidyl ether of bisphenol A (DGEBA) epoxy/aromatic amine system incorporated with an organic-inorganic hybrid molecule, polyhedral oligomeric silsesquioxane (POSS). Samples isothermally cured at varying cure temperatures and times were analyzed by differential scanning calorimetry (DSC). $T_g$ vs. ln (time) data at an arbitrary reference were superposed by time-temperature shifts for the kinetically controlled reaction, and the shift factors were used to calculate an Arrhenius activation energy. Influence of POSS was investigated from $T_g$ vs. ${\alpha}$ data, which in turn were fitted with DiBenedetto equation.

유무기 하이브리드 나노 물질인 polyhedral oligomeric silsesquioxane(POSS)를 첨가한 diglycidyl ether of bisphenol A(DGEBA) 에폭시/방향족 아민계를 다양한 경화온도에서 등온으로 반응시킨 후 유리전이온도($T_g$)와 전환율(${\alpha}$)을 DSC를 이용하여 측정하였다. 등온 경화시간에 따른 $T_g$의 변화 데이터를 임의로 설정된 기준 온도에서 수평 이동시켜 반응초기에 해당하는 속도우세 구간에서 서로 겹치게 하여 이때 필요한 이동 인자를 구하였으며, 이를 이용하여 활성화 에너지를 결정하였다. 또한 POSS가 $T_g$${\alpha}$에 미치는 영향을 조사하였으며 이들의 관계를 알기위하여 DiBenedetto식을 이용하여 분석하였다.

Keywords

Acknowledgement

Supported by : 금오공과대학교

References

  1. H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill, New York, 1982.
  2. C. A. May, Epoxy Resins Chemistry and Technology, 2nd ed., Marcel Dekker, New York, 1988.
  3. G. Wisanrakkit and J. K. Gillham, J. Coat. Technol., 62, 35 (1990).
  4. A. Lee and J. D. Lichtenhan, J. Appl. Polym. Sci., 73, 1993 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990906)73:10<1993::AID-APP18>3.0.CO;2-Q
  5. G. Z. Li, L. Wang, H. Toghiani, T. L. Daulton, K. Koyama, and C. U. Pittman, Macromolecules, 34, 8686 (2001). https://doi.org/10.1021/ma011117q
  6. A. Lee and J. D. Lichtenhan, Macromolecules, 31, 4970 (1998). https://doi.org/10.1021/ma9800764
  7. B. X. Fu, B. S. Hsiao, H. White, M. Rafailovich, P. T. Mather, H. G. Jeon, S. Phillips, J. Lichtenhan, and J. Schwab, Polym. Int., 49, 437 (2000). https://doi.org/10.1002/(SICI)1097-0126(200005)49:5<437::AID-PI239>3.0.CO;2-1
  8. W. Y. Chen, Y. Z. Wang, S. W. Kuo, C. F. Huang, P. H. Tung, and F. C. Chang, Polymer, 45, 6897 (2004). https://doi.org/10.1016/j.polymer.2004.07.070
  9. J. K. H. Teo, K. C. Teo, B. Pan, Y. Xiao, and X. Lu, Polymer, 48, 5671 (2007). https://doi.org/10.1016/j.polymer.2007.07.059
  10. H. Dodiuk, S. Kenig, I. Blinsky, A. Dotan, and A. Buchman, Inter. J. Adhes. Adhes., 25, 211 (2005). https://doi.org/10.1016/j.ijadhadh.2004.07.003
  11. C. Ramirez, M. Rico, A. Torres, L. Barral, J. Lopez, and B. Montero, Eur. Polym. J., 44, 3035 (2008). https://doi.org/10.1016/j.eurpolymj.2008.07.024
  12. J. Choi, J. Harcup, A. F. Yee, Q. Zhu, and R. M. Laine, J. Am. Chem. Soc., 123, 11420 (2001). https://doi.org/10.1021/ja010720l
  13. V. L. Zevtkov, Polymer, 43, 1069 (2002). https://doi.org/10.1016/S0032-3861(01)00695-4
  14. J. P. Pascault and R. J. J. Williams, J. Polym. Sci. Part B: Polym. Phys., 28, 85 (1990). https://doi.org/10.1002/polb.1990.090280107
  15. A. T. DiBenedetto, J. Polym. Sci. Part B: Polym. Phys., 25, 1949 (1987). https://doi.org/10.1002/polb.1987.090250914