DOI QR코드

DOI QR Code

Implementation of H.264/AVC Deblocking Filter on 1-D CGRA

1-D CGRA에서의 H.264/AVC 디블록킹 필터 구현

  • Song, Sehyun (Dept. of Electrical and Computer Engineering, University of Seoul) ;
  • Kim, Kichul (Dept. of Electrical and Computer Engineering, University of Seoul)
  • Received : 2013.10.16
  • Accepted : 2013.11.13
  • Published : 2013.12.30

Abstract

In this paper, we propose a parallel deblocking filter algorithm for H.264/AVC video standard. The deblocking filter has different filter processes according to boundary strength (BS) and each filter process requires various conditional calculations. The order of filtering makes it difficult to parallelize deblocking filter calculations. The proposed deblocking filter algorithm is performed on PRAGRAM which is a 1-D coarse grained reconfigurable architecture (CGRA). Each filter calculation is accelerated using uni-directional pipelined architecture of PRAGRAM. The filter selection and the conditional calculations are efficiently performed using dynamic reconfiguration and conditional reconfiguration. The parallel deblocking filter algorithm uses 225 cycles to process a macroblock and it can process a full HD image at 150 MHz.

본 논문에서는 H.264/AVC 비디오 코덱용 디블록킹 필터의 병렬 알고리즘을 제안한다. 디블록킹 필터는 BS(boundary strength)에 따라 다른 필터 연산을 수행하며, 각 필터 연산은 다양한 조건 연산을 필요로 한다. 또한 각 경계면의 연산 순서가 정해져 있기 때문에 병렬 처리가 쉽지 않다. 본 논문에서 제안하는 디블록킹 필터 알고리즘은 최근에 소개된 1-D CGRA (coarse grained reconfigurable architecture)인 PRAGRAM (pipelined reconfigurable arrays with assistant manager groups)에서 처리된다. 디블록킹 필터 연산은 PRAGRAM의 단방향 파이프라인 PE 배열 구조를 이용하여 각 필터 연산을 고속으로 수행하고, dynamic reconfiguration 및 conditional reconfiguration을 이용하여 필터 선택과 조건 연산을 효율적으로 처리한다. 디블록킹 필터의 병렬 알고리즘은 매크로블록 당 225 사이클을 소요한다. 이는 동작주파수 150 MHz에서 full HD급 영상을 처리할 수 있는 성능이다.

Keywords

References

  1. Joint Video Team of ITU-T and ISO/IEC JTC 1, "Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification(ITU-T Rec. H.264 $\mid$ ISO/IEC 14496-10 AVC)," Joint Video Team (JVT) of ISO/IEC MPEG and ITU-TVCEG, JVT-G050, March 2003.
  2. Hartenstein, R., "A decade of reconfigurable computing: a visionary retrospective," Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001. Proceedings, vol., no., pp.642-649, 2001.
  3. Singh, H.; Ming-Hau Lee; Guangming Lu; Kurdahi, F.J.; Bagherzadeh, N.; Chaves Filho, E.M., "MorphoSys: an integrated reconfigurable system for data-parallel and computation-intensive applications," Computers, IEEE Transactions on, vol.49, no.5, pp.465-481, May 2000. https://doi.org/10.1109/12.859540
  4. Chalamalasetti, S.R.; Purohit, S.; Margala, M.; Vanderbauwhede, W., "MORA - An Architecture and Programming Model for a Resource Efficient Coarse Grained Reconfigurable Processor," Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on, vol., no., pp.389,396, July 29 2009-Aug. 1 2009.
  5. Purohit, S.; Rahul, S.; Margala, M.; Vanderbauwhede, W., "Throughput/Resource-Efficient Reconfigurable Processor for Multimedia Applications," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol.PP, no.99, pp.1,1,0.
  6. S. H. Song, S. H. Yoo, K. H. Kim, "PRAGRAM : Pipelined Reconfigurable Array with Groups of Assistant Managers," manuscript, 2013
  7. Y. J. Jung, K. G. Ryoo, "Optimized Hardware Design of Deblocking Filter for H.264/AVC," Journal of IEEK SD, vol. 47, no. 1, pp. 20-27, 2010.
  8. Y. H. Yu, C. H. Lee, "Design of a Pipelined Deblocking Filter with efficient memory management for high performance H.264 decoders," " Journal of IEEK SD, vol. 45, no. 1, pp. 64-70, 2008.
  9. G. Khurana and A. A.Kassim, "A Pipelined Hardware Implementation of In-loop Deblocking Filter in H.264/AVC," IEEE Transactions On Consumer Electronics, Vol. 52, No. 2, pp. 536-540, May 2006. https://doi.org/10.1109/TCE.2006.1649676