DOI QR코드

DOI QR Code

Characteristics of Nylon6/Ionomer Semi IPN for Molded-In-Color Compound

나일론6/이오노머 Semi IPN의 몰드-인-칼라 수지 특성 연구

  • Lee, Ja-Hun (Center for Photofunctional Energy Materials, Dept. of Polymer Sci. and Eng., Dankook University) ;
  • Hwang, Jin-Taek (Mando Advanced Materials) ;
  • Kang, Ho-Jong (Center for Photofunctional Energy Materials, Dept. of Polymer Sci. and Eng., Dankook University)
  • 이재훈 (광에너지소재연구센터 단국대학교 고분자시스템공학과) ;
  • 황진택 (만도신소재(주)) ;
  • 강호종 (광에너지소재연구센터 단국대학교 고분자시스템공학과)
  • Received : 2011.09.22
  • Accepted : 2011.12.06
  • Published : 2012.07.25

Abstract

The characteristics of nylon6/ionomer semi interpenetrating networks (IPN) as a molded-in-color (MIC) compound had been studied, and comparison was made with nylon6/ionomer blends. Nylon6/ionomer semi IPN shows better homogeneity in phase morphology than nylon6/ionomer blend, and it caused better anti-scratching performance than the blend. This semi IPN structure resulted in lowered crystallization rate, increased melt viscosity and less temperature dependency of viscosity. As a result, we may expect the enhancement of melt processing characteristics in an injection molding process using nylon6/ionomer semi IPN as a MIC compound.

Molded-in-color(MIC) 수지로 사용 가능한 나일론6/이오노머 semi interpenetrating network(IPN)의 물성을 기존 MIC 수지인 나일론6/이오노머 블렌드와 비교하여 살펴보았다. 나일론6/이오노머 semi IPN은 분자 수준의 믹싱인 IPN 구조를 가져 블렌드에 비하여 상대적으로 개선된 homogeneous 형태학적 구조를 가짐에 따라 내스크래칭 특성이 개선됨을 알 수 있었다. 이러한 semi IPN 구조는 나일론6의 결정화 속도를 감소시키며 용융점도의 증가 그리고 점도의 온도 의존성을 감소시켜 블렌드에 비하여 상대적으로 MIC용 사출 가공 특성이 우수해짐을 예측할 수 있었다.

Keywords

References

  1. R. P. Saltman, U. S. Patent 5,091,478 (1992).
  2. K. Ogiso and H. Mukai, U. S. Patent 5,800,912 (1998).
  3. Y. Kazuhisa, K. Daisuke, and K. Akihikoc, Japanese Patent 308441 (1989).
  4. S. Kuniyuki, K. Matsuji, N. Masakazu, and M. Masamichi, Japanese Patent 301748 (1989).
  5. M. Toshiki and O. Kazuhisa, Japanese Patent 255842 (1990).
  6. S. C. Feinberg, U. S. Patent 6,756,443 B2 (2004).
  7. C. J. Talkowski, U. S. Patent 5,866,658 (1999).
  8. S. C. Feinberg, C. J. Talkowski, and K. C. Andersen, U. S. Patent 7,144,938 B1 (2006).
  9. C. W. Lin, Y. F. Huang, and A. M. Kannan, J. Power Sources, 164, 449 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.081
  10. D. L. Siegfried, D. A. Thomas, and L. H. Sperline, U. S. Patent 4,468,499 (1984).
  11. D. Klempner, L. H. Sperling, and L. A. Utracki, Interpenetrating Polymer Networks, American Chemical Society, 1994.
  12. T. Hong, J. Hwang, and H. Kim, Korea Patent 0081493 (2010).
  13. T. Hong, J. Hwang, and H. Kim, Korea Patent 0049345 (2010).
  14. T. Hong, J. Hwang, and H. Kim, Korea Patent 0049362 (2010).
  15. T. Hong, J. Hwang, and H. Kim, Korea Patent 0049347 (2010)
  16. X. F. Lu and J. H. Hay, Polymer, 42, 9423 (2001). https://doi.org/10.1016/S0032-3861(01)00502-X
  17. M. Joshi, B. S. Butola, G. Simon, and N. KuKaleva, Macromolecules, 39, 1839 (2006). https://doi.org/10.1021/ma051357w
  18. K. C. Cho, B. H. Lee, K. M, Hwang, H. S. Lee, and S. J. Lee, Polym. Eng. Sci., 38, 1969 (1998). https://doi.org/10.1002/pen.10366
  19. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941). https://doi.org/10.1063/1.1750906