DOI QR코드

DOI QR Code

Synthesis and Analysis of Multi-functional Urethane Acrylate Monomer, and its Application as Curing Agent for Poly(phenylene ether)-based Substrate Material

다관능 우레탄 아크릴레이트 단량체의 합성과 분석, 및 폴리페닐렌에테르 기판소재용 경화성분으로의 적용

  • Kim, Dong-Kook (Department of Chemistry & Applied Chemistry, Hanyang University) ;
  • Park, Seong-Dae (Department of Chemistry & Applied Chemistry, Hanyang University) ;
  • Oh, Jin-Woo (Korea Electronics Technology Institute) ;
  • Kyoung, Jin-Bum (Department of Chemistry & Applied Chemistry, Hanyang University)
  • 김동국 (한양대학교 응용화학과) ;
  • 박성대 (한양대학교 응용화학과) ;
  • 오진우 (전자부품연구원 전자소재.응용연구센터) ;
  • 경진범 (한양대학교 응용화학과)
  • Received : 2011.11.28
  • Accepted : 2012.01.15
  • Published : 2012.07.25

Abstract

Multi-functional urethane acrylate monomers as the curing agent of poly(phenylene ether) (PPE) were synthesized and then the urethane bond formation was checked by FTIR spectrometry and NMR analysis. The synthesized monomers were mixed with PPE and fabricated to dielectric substrates. After forming PPE/monomer composite sheets by a film coater, several sheets were laminated to a test substrate in a vacuum laminator and then its properties depending on the type and the amount of monomers, such as dielectric constant, dielectric loss, and peel strength, were measured. Between the two different hydroxyl acrylates, when the monomer synthesized with 2-hydroxy-3-phenoxypropyl acrylate containing a phenyl group was used as a curing agent, a smaller dielectric loss was obtained and the dielectric constant and loss decreased with a decrease in the amount of the monomer. The peel strength values of the test substrates, however, did not show any specific difference between the cases of two synthesized monomers. As a result, it was obtained the polymer substrate for high frequency application having peel strength of about 10 N, low dielectric constant of 2.54, and low dielectric loss of 0.0027 at 1 GHz.

폴리페닐렌에테르[PPE, poly(phenylene ether)] 수지의 경화성분으로서 다관능 우레탄 아크릴레이트 단량체를 합성하고, 이후 PPE와 혼합하여 유전체 기판을 제작하고 그 특성을 평가하였다. 단량체 합성 후 FTIR, NMR 분석을 통하여 우레탄 결합이 형성되었는지 확인하였다. 복합물 쉬트를 필름 코터로 성형한 후, 진공가 압적층하여 테스트 기판을 제작하고, 단량체의 종류 및 함량에 따른 유전율, 유전손실, peel 강도를 평가하였다. 2종의 하이드록시 아크릴레이트 중 페닐기를 가진 2-hydroxy-3-phenoxypropyl acrylate를 이용하여 합성된 단량체를 경화성분으로 사용한 경우 유전손실이 더 작았으며, 단량체의 함량이 줄어들면서 유전율과 손실이 감소하는 경향을 나타내었다. Peel 강도는 단량체의 종류에 따라서 특별한 경향성을 보이지 않았다. 실험결과 동박 접합 강도가 약 10 N이고, 1 GHz에서 유전율이 약 2.54, 유전손실이 0.0027로 작은 고주파 대역용 고분자 기판소재를 얻었다.

Keywords

References

  1. F. Miyashiro and S. Wakabayashi, Elctroenics Materials toward Ubiquitous Network Age (Japanese), CMC Publishing Co., Tokyo, 2003.
  2. New Trends of Polymers for Electronic Components IV (Japanese), ST-TECHNO, Yokohama, 2005.
  3. T. Ito, K. Ichinomiya, S. Asami, and T. Yamada, Japanese Patent 238761 (2003).
  4. Y. Satsuu, S. Amou, A. Takahishi, N. Watabe, M. Unno, T. Fujieda, H. Akaboshi, and A. Nagai, Japanese Patent 041966 (2005).
  5. K. Kaneko, T. Hirose, K. Goto, and A. Hasegawa, Japanese Patent 045318 (2006).
  6. S. Amou, A. Nagai, T. Ishikawa, and A. Takahashi, US Patent 7,193,009 (2007).
  7. M. Sugimasa, A. Nagai, S. Yamada, and S. Amou, US Patent 0020781 (2005)
  8. M. Sugimasa, A. Nagai, S. Yamada, and S. Amou, Japanese Patent 41914 (2005).
  9. S. Sase, Y. Mizuno, D. Fujimoto, and M. Nomoto, J. Network Polymer(Japanese), 22, 150 (2001).
  10. S. Sase, Y. Mizuno, D. Fujimoto, and M. Nomoto, J. Network Polymer(Japanese), 22, 192 (2001).
  11. S. Sase, Y. Mizuno, D. Fujimoto, N. Takano, T. Iijima, H. Negishi, and T. Sugimura, Proc. of IPC Printed Circuits Expo 2002, S05-2-1 (2002).
  12. S. Sase, Y. Mizuno, T. Sugimura, and H. Negishi, US Patent 6,156,831 (2000).
  13. D. K. Kim, S. D. Park, W. S. Lee, M. J. Yoo, S. H. Park, J. K. Lim, and J. B. Kyoung, Polymer(Korea), 31, 474 (2007).
  14. D. K. Kim, S. D. Park, M. J. Yoo, W. S. Lee, N. K. Kang, J. K. Lim, and J. B. Kyoung, Polymer(Korea), 33, 39 (2009).
  15. S. K. Henning and R. Costin, Spring 167th Technical Meeting of the Rubber Division, ACS, San Antonio, TX, May 16-18 (2005).
  16. S. Kang, Y. Yang, N. Kwak, Y. Kang, and T. Hwang, Polymer (Korea), 29, 59 (2005).
  17. J. K. Kim, H. K. Cho, S. T. Noh, and S. C. Kang, J. Korean Ind. Eng. Chem., 13, 815 (2002).
  18. T. Yamamoto, Technologies & Applications of Multilayered Low Temperature Cofired Ceramics (LTCC) (Japanese), CMC Publishing Co., Tokyo, 2005.