온도센서가 집적된 WLP LED의 제작과 이를 통한 광 특성 보상 시스템의 구현

Fabrication of the Wafer Level Packaged LED Integrated Temperature Sensor and Configuration of The Compensation System for The LED's Optical Properties

  • 강인구 (한국과학기술원 전기 및 전자공학과) ;
  • 김진관 (한국과학기술원 전기 및 전자공학과) ;
  • 이희철 (한국과학기술원 전기 및 전자공학과)
  • Kang, In-Ku (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jin-Kwan (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hee-Chul (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2012.03.14
  • 심사 : 2012.06.17
  • 발행 : 2012.07.25

초록

기존의 LED 패키지가 갖는 온도에 따른 광 특성 변화 문제를 해결하기 위하여 온도센서가 집적된 LED 패키지 시스템을 제안하였다. 패키지의 온도를 실시간으로 측정하기 위하여 정확도가 우수하며 온도에 따른 저항의 변화가 선형적인 특징을 갖는 온도센서(RTD 형)를 설계하였으며, 장기간의 안정성을 보장하기 위하여 안정된 박막의 증착조건을 결정하고 이를 바탕으로 $1.560{\Omega}/^{\circ}C$의 민감도를 갖는 온도센서를 패키지 내부에 제작하였다. 제작된 패키지를 이용하여 온도에 무관하게 일정한 광량을 나타내는 시스템의 구현을 위하여 변환 회로부와 제어 회로부를 제작하고 이들을 결합함으로써, 패키지의 온도 변화에 따라 PWM duty ratio의 변화를 통해 광 출력을 보상해 주는 시스템을 제안하고 제작하였다. LED의 동작온도인 $0^{\circ}C$에서 $140^{\circ}C$ 범위에서 PWM duty ratio를 관측한 결과 제안했던 일정한 광량을 위한 PWM duty ratio에 매우 근접한 출력 신호를 발생시키는 것을 확인할 수 있었다.

In this paper, resistance temperature detector (RTD) integrated into the LED package is proposed in order to solve the temperature dependence of LED's optical properties. To measure the package temperature in real time, the RTD type temperature sensor having excellent accuracy and linearity between temperature change and resistance change was adopted. A stable metallic film is required for long term reliability and stability of the RTD type temperature sensor. Therefore, deposition and annealing condition for the film were determined. Based on the determined condition, the RTD type temperature sensor with the sensitivity of about $1.560{\Omega}/^{\circ}C$ was fabricated inside the LED package. In order to configurate the LED package system keeping the constant brightness regardless of the temperature, additional conversion circuit and control circuit boards were fabricated and added to the fabricated LED package. The proposed system was designed to compensate the light intensity caused by temperature change using the variable duty rate of driving current. As a result, the duty rate of PWM signal which is the output signal of the configurated system was changed with the temperature change, and the duty rate was similarly varied with the target duty rate. Consequently, it was focused the fabricated RTD can be used for compensating the optical properties of LED and the LED package which exhibits constant brightness regardless of the temperature change.

키워드

참고문헌

  1. D. G. Todorov, and L. G. Kapisazov, "LED thermal management" in Proc. of Electronics' 2008, Conf. on Sozopol, Bulgaria, pp. 139-144, Sep. 2008,
  2. J. M. Kang, J. H. Choi, and et al."Fabrication and thermal analysis of wafer level light emitting diode packages," IEEE Elec. Dev. Lett. Vol. 29, no. 10, pp. 1118-1120, Oct. 2008. https://doi.org/10.1109/LED.2008.2002749
  3. C. Y. Lee, A. Su, and et al. "Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes," Sensor, Vol. 10, no. 4, pp. 3363-3372. Apr. 2010. https://doi.org/10.3390/s100403363
  4. E. J. P. Santos and I. B. Vasconcelos, "RTD based smart temperature sensor : Process development and circuit design," in Proc. of Microelectronics' 2008. Conf. on Nis, Serbia, May 2008.
  5. M. T. Kara and M. E. Rizkalla, "A 3-wire differential resistance measurement circuit," Instrumentation and Measurement Technology 1993. Conf. on Irvine, CA, USA, May 1993.
  6. K. Blake, "Transmit Filter Handles ADSL Modem Tasks," Electronic Design,. Vol. 47 no. 13, p23 June 1999
  7. W. Yu and G. Lisi, "High efficiency DC-DC converter with twin-bus for dimming LED lighting," IEEE Energy Conversion Congress and Exposition, 2010. Conf. on Atlanta, USA, p457-462 Sept. 2010
  8. 한국과학기술원, "RTD 온도센서 개발," 보고서, 1992년 12월.
  9. M. A. Angadi and L. A. Udanchan, "Electrical properties on thin nickel films", Thin Solid Films, Vol. 79, no. 2, pp.149-153 May 1981. https://doi.org/10.1016/0040-6090(81)90272-8
  10. J. S. Hirschhorn, "On the electrical resistivity of thin nickel films," J. Phys. Chem. Solids, Vol. 23, pp.1821-1822 Mar. 1962. https://doi.org/10.1016/0022-3697(62)90222-6
  11. T. Hovorun and A. Chornous, "Thin Overlayer Influence on Electrophysical properties of Nickel films," Thin Solid Films, Vol. 317, no. 1-2, pp.202-205, Apr. 1998. https://doi.org/10.1016/S0040-6090(97)00620-2
  12. W. Schemminger and D. Stark, "The influence of deposition temperature on the electrical resistance of thin Cu films," Surface Science, Vol. 190, no. 2, pp.1103-1110, Oct. 1987.
  13. G. S. Chung and C. H. Kim, "RTD characteristics for micro-thermal sensors," Microelectronics Journal, Vol. 39, no. 12, pp.1560-1563 Dec. 2008. https://doi.org/10.1016/j.mejo.2008.02.028
  14. V. Vand, "A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum," Phy. Soc. Vol. 55, no. 3, pp.222-246, May 1943. https://doi.org/10.1088/0959-5309/55/3/308