DOI QR코드

DOI QR Code

Assessing the Nano-Dynamics of the Cell Surface

  • Bae, Chil-Man (Department of Physiology and Biophysics, State University of New York) ;
  • Park, Ik-Keun (Mechanical Engineering, Seoul National University of Technology) ;
  • Butler, Peter J. (Department of Bioengineering, The Pennsylvania State University)
  • 투고 : 2012.03.28
  • 심사 : 2012.05.25
  • 발행 : 2012.06.30

초록

It is important to know the mechanism of cell membrane fluctuation because it can be readout for the nanomechanical interaction between cytoskeleton and plasma membrane. Traditional techniques, however, have drawbacks such as probe contact with the cell surface, complicate analysis, and limit spatial and temporal resolution. In this study, we developed a new system for non-contact measurement of nano-scale localized-cell surface dynamics using modified-scanning ion-conductance microscopy. With 2 nm resolution, we determined that endothelial cells have local membrane fluctuations of ~20 nm, actin depolymerization causes increase in fluctuation amplitude, and ATP depletion abolishes all membrane fluctuations.

키워드

참고문헌

  1. D. Boal, "Mechanics of the Cell," Cambridge University Press, Cambridge, UK (2002)
  2. W. Helfrich and R. M. Servuss, "Undulations, steric interaction and cohesion of fluid membranes," Nuovo Cimento D, Vol. 3, pp. 137-151 (1984) https://doi.org/10.1007/BF02452208
  3. F. Brochard and J. F. Lennon, "Frequency spectrum of the flicker phenomenon in erythrocytes," J. Phys. (Fr), Vol. 36, pp.1035-1047 (1975) https://doi.org/10.1051/jphys:0197500360110103500
  4. J. Evans, W. Gratzer, N. Mohandas, K. Parker and J. Sleep, "Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence," Biophys. J., Vol. 94, pp. 4134-4144 (2008) https://doi.org/10.1529/biophysj.107.117952
  5. H. Strey, M. A. Peterson and E. Sackmann, "Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition," Biophys. J., Vol. 69, pp. 478-488 (1995) https://doi.org/10.1016/S0006-3495(95)79921-0
  6. S. Tuvia, S. V. Levin and R. Korenstein, "Oxygenation-deoxygenation cycle of erythrocytes modulates submicron cell membrane fluctuations," Biophys. J., Vol. 63 pp. 599-602 (1992) https://doi.org/10.1016/S0006-3495(92)81625-9
  7. N. S. Gov and S. A. Safran, "Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects," Biophys. J., Vol. 88, pp. 1859-1874 (2005) https://doi.org/10.1529/biophysj.104.045328
  8. M. Murrell, L. L. Pontani, K. Guevorkian, D. Cuvelier, P. Nassoy and C. Sykes, "Preading dynamics of biomimetic actin cortices," Biophys J., Vol. 100, pp. 1400-1409 (2011) https://doi.org/10.1016/j.bpj.2011.01.038
  9. T. Auth, S. A. Safran and N. S. Gov, "Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation," N. J. Phys, USA (2007)
  10. N. Gov, A.G. Zilman and S. Safran, "Cytoskeleton confinement and tension of red blood cell membranes," Phys. Rev. Lett., Vol. 90, p. 228101 (2003) https://doi.org/10.1103/PhysRevLett.90.228101
  11. S. Rochal and V. L. Lorman, "Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells," Phys. Rev. Lett. Vol. 96, p. 248102 (2006) https://doi.org/10.1103/PhysRevLett.96.248102
  12. R. M. Hochmuth, "Measuring the mechanical properties of individual human blood cells," J Biomech Eng., Vol. 115, pp. 515-519 (1993) https://doi.org/10.1115/1.2895533
  13. T. Betz, M. Lenz, J. F. Joanny and C. Sykes, "ATP-dependent mechanics of red blood cells," Proc Natl Acad Sci., Vol. 106, pp. 15320-15325 (2009) https://doi.org/10.1073/pnas.0904614106
  14. Y. Z. Yoon, H. Hong, A. Brown, D. C. Kim, D. J. Kang, V. L. Lew and P. Cicute, "Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level," Biophys J., Vol. 97, pp. 1606-1615 (2009) https://doi.org/10.1016/j.bpj.2009.06.028
  15. E. Hecht, S. M. Usmani, S. Albrecht, O. H. Wittekindt, P. Dietl, B. Mizaikoff and C. Kranz, "Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells," Anal Bioanal Chem., Vol. 399, pp. 2369-2378 (2010)
  16. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg and M. Käll, "A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells," Lab Chip, Vol. 5, pp. 431-436 (2005) https://doi.org/10.1039/b416749j
  17. M. Miragoli, A. Moshkov, P. Novak, A. Shevchuk, V. O. Nikolaev, I. El-Hamamsy, C. M. Potter, P. Wright, S. H. Kadir, A. R. Lyon, J. A. Mitchell, A. H. Chester, D. Klenerman, M. J. Lab, Y. E. Korchev, S. E. Harding and J. Gorelik, "Scanning ion conductance microscopy: a convergent high-resolution technology for multiparametric analysis of living cardiovascular cells," J. R. Soc. Interface, Vol. 8, pp. 913-925 (2011) https://doi.org/10.1098/rsif.2010.0597
  18. C. Bae and P. J. Butler, "Automated single-cell electroporation," Biotechniques, Vol. 41, pp. 399-400 (2006) https://doi.org/10.2144/000112261
  19. D. E. Fuentes, C. Bae and P. J. Butler, "Focal adhesion induction at the tip of a functionalized nanoelectrode," Cell Mol Bioeng., Vol. 4, pp. 616-626 (2011) https://doi.org/10.1007/s12195-011-0214-7
  20. C. Bae and P. J. Butler, "Finite element analysis of microelectrotension of cell membranes," Biomech Model Mechanobiol., Vol. 7, pp. 379-386 (2008) https://doi.org/10.1007/s10237-007-0093-y
  21. B. Alberts, D. Bray, J. Lewis, M. Raff and K. Roberts, "Molecular Biology of the Cell," Garland Publishing, New York, USA (1994)