• Title/Summary/Keyword: Microbial decomposition

Search Result 126, Processing Time 0.026 seconds

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

The effect of simulated acid rain on microbial community structure in decomposing leaf litter

  • Cha, Sangsub;Lim, Sung-Min;Amirasheba, Bahitkul;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.223-233
    • /
    • 2013
  • Acid deposition is one of the most serious environmental problems in ecosystems. The present study surveyed the effects of simulated acid rain on leaf litter mass loss and microbial community in the decomposing leaf litter of Sorbus anifolia in a microcosm at $23^{\circ}C$ and 40% humidity. Microbial biomass was measured by substrate-induced respiration (SIR) and phospholipid fatty acids (PLFAs), and the microbial community structures were determined by composition of PLFAs at each interval of decomposition in litter sample and at each pH treatment. The microbial biomass showed peaks at mid-stage of decomposition, decreasing at the late stage. The leaf litter mass loss of S. anifolia decreased with decreasing pH during early and mid-decomposition stages; however the mass loss becomes similar between pH treatments at late-decomposition stage. The acidification remarkably lowers the microbial biomass of bacteria and fungi; however, microbial diversity was unchanged between pH treatments at each stage of litter decomposition. With changes of decomposition stage and pH treatment there were considerable differences in replacement and compensation of microbial species. Fungi/bacteria ratio was considerably changed by pH treatment. The PLFA profile showed significantly larger fungi/bacteria ratio at pH 5 than pH 3 at the early stage of decomposition, and the difference becomes smaller at the later decomposition stage. At low pH, pH 3 and pH 4, the fungi/bacteria ratios were stable according to the litter decomposition stages. Simulated acid rain caused decreases of 10Me17:0, 16:1${\omega}$7c, 18:1${\omega}$7, 15:0, but increase of 24:0. In addition, litter mass loss showed significant positive correlation with microbial biomass measured by SIR and PLFA on the decomposing leaf litter.

The Effect Estimation of Heavy Metals on the Microbial Activity during Leaf Litter Decomposition (낙엽분해동안 미생물 활성에 미치는 중금속의 영향 추정)

  • Shim, Jae-Kuk;Shin, Jin-Ho;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.887-892
    • /
    • 2011
  • This study was to find out influence of heavy metal concentration in plant on microbial activities during decomposition of Artenmisia princeps var. orientalis and Equisetum arvense collected from an abandoned mine and control site in Cheongyang-gun Chungcheongnam-do. Microbial respiration rate showed the highest value at the time of the first collection, and then tended to decline over time. The highest microbial respiration rate appeared in leaf litters with low heavy metal contents, and A. princeps var. orientalis and E. arvense collected and decomposed at the control site showed the fastest decomposition rate. For both A. princeps var. orientalis and E. arvense, litters with low heavy metal content appeared to have higher microbial biomass. There was apparent quantitative correlation between decomposition rate and cumulative respiration rate of leaf litters, and between decomposition rate and microbial biomass of leaf litters. Thus, the study result showed that leaf litter with higher heavy metal content had a negative impacts on the growth and activity of microbial decomposer during decomposition processes.

Studies on the Decomposition of Leaf Litter Containing Heavy Metals in Andong Serpentine Area, Korea I. Microcosm Experiment (사문암지대의 중금속 함유 낙엽의 분해에 관한 연구 I. Microcosm 실험)

  • Ryou, Sae-Han;Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • This study attempted to compare the litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens which collected from serpentine soil acting potentially toxic concentration of heavy metals and non-serpentine soil by using the microcosm method for 192 days under constant humidity and $23^{\circ}C$. The contents of Ni, Fe, Mg and Cr in the serpentine and nonserpentine soil originated litter showed high differences between them. The litter samples from serpentine site have lower C/N than non-serpentine litter, but the soluble carbohydrate content was shown almost similar between two plant litter. The mass loss rates of leaf litter from serpentine area were slower than those from non-serpentine site. During the experimental period, the remained dry weight of A. hirta and M. sinensis var. purpurascens litter collected from serpentine site were 64.7%, 65.0% of initial dry weight and litter samples from non-serpentine site showed 54.2%, 50.7%, respectively. K and Na were leached rapidly at the initial decomposition periods, but Ca showed immobilization and other metal elements reserved at the decomposing litter for a long time. The decomposing A. hirta litter from non-serpentine soil showed higher values of $CO_2$ evolution, microbial biomass-C, and microbial biomass-N than those in serpentine soil originated litter acting nutrient stresses and exhibited rapid decay rate. The microbial biomass and microbial respiration of decaying litter were positively correlated with litter decomposition rate, and these relationships showed more rapid slope in non-serpentine soil originated litter than that in serpentine soil.

Effects of Soil Nitrogen Addition on Microbial Activities and Litter Decomposition (토양 내 질소 증가가 미생물 활성 및 식물체의 분해에 미치는 영향)

  • Chae, Hee Myung;Lee, Sang Hoon;Cha, Sang Sub;Shim, Jae Kuk
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.276-288
    • /
    • 2013
  • The present study investigates the effects of elevated soil nitrogen on growth and decomposition of Oryza sativa shoots. The plants were cultivated in greenhouse until leaf senescence and the total biomass of the plant increased 1.9 times at nitrogen addition plot. Total C and N content in shoot increased; however, lignin, C/N, and lignin/N levels decreased in the N-treated soil. The shoot litters collected from the control and N-treated soil were tested for decay and microbial biomass, $CO_2$ evolution, and enzyme activities during decomposition on the control and N-treated soil at $25^{\circ}C$ microcosm. The remaining mass of the shoot litter was approximately 6% higher in the litter collected from the control soil (53.0%) than the litter collected from high N-treated soil (47.1%). However, the high N-containing litter exhibited faster decay in the control soil than in the N-treated soil. The litter containing high N, low C/N, and low lignin/N showed a higher decomposition rate than that of low quality litter. The N-addition showed decreased microbial biomass C and dehydrogenase activity in soil; however, it exhibited high microbial biomass N and urease activity in soil. When the high N-containing litter decays on the N-treated soil, the microbial biomass C increased rapidly at the initial phase of decomposition and decreased thereafter, and dehydrogenase activity was less that of other treatment; however, there was no effect on the microbial biomass N. The urease in the decomposing litter was highest during the early decomposition stage and dramatically decreased thereafter. The present findings suggested that the N-addition increased N content in litter, but inhibited the decomposition process of above-ground biomass in terrestrial ecosystems.

Effects of Decomposition of Organic Substances as Rice Straw and Chicken Manure mixed with Saw Dust treated with Commercial Inoculums (미생물제(微生物劑)의 퇴비부숙(堆肥腐熟) 효과(效果))

  • Yun, Sei-Young;Lee, Yong-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.302-309
    • /
    • 2000
  • These experiments have been conducted to study the effect by microbial inoculums currently on the market of enhancing the decomposition of organic matters. As a result of studying the effect of enhancing the decomposition of rice straw and chicken manure mixed with saw dust treated with commercial inoculums, it was found that the use of inoculums have speeded up the rate of decomposing straws at the early stage. The decomposition rate of rice straws that have speeded up with the use of comcrial inoculums in at early incubation periods has slow down in the later stage while the decomposition rate of chicken manure that has slowed down in the early stage has speeded up at the later incubation. As a result, it is found that there have been no differences between the use of microbial inoculums and control. In the experiment, filamentous fungus is found to have played an important role in decomposing the rice straws and bacteria is considered to have played a greater role in the decomposition of chicken manure mixed with saw dust.

  • PDF

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea (안동 사문암지대의 중금속 함유 낙엽의 분해)

  • Ryou, Sae-Han;Kim, Jeong-Myung;Cha, Sang-Seub;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.426-435
    • /
    • 2010
  • The present study attempts to compare the soil chemical characteristics and biological activities (i.e. microbial biomass and soil enzyme activities), and litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens) collected from serpentine and non-serpentine sites by litter bag techniques at serpentine and non-serpentine field experiment sites over a 9-month period. The serpentine soil showed higher pH and soil alkaliphosphatase activity, and lower soil dehydrogenase and urease activities than the non-serpentine soil. Microbial biomass-N at the serpentine soil was larger than the non-serpentine soil, although the microbial biomass-C and microbial biomass-N represented no significant difference between serpentine and non-serpentine soil. These results suggest that the larger microbial biomass-N caused the lower C/N in serpentine soil. At the end of the experiment, the litter samples of A. hirta and M. sinensis collected from serpentine soil revealed a 39.8% and 38.5% mass loss, and the litter sample from non-serpentine soil also showed a 41.1% and 41.7% mass loss at the serpentine site. On the other hand, at the non-serpentine site, 42.2%, 37.4%, and 46.8%, 44.8% were respectively shown. These results demonstrate that the litter decomposition rate is more intensely affected by the heavy metal content of leaf litter than soil contamination. Moreover, the litter collected from the serpentine soil had a lower C/N, whereas the litter decomposition rate was slower than the litter from the non-serpentine soil, because the heavy metal inhibition activities on the litter decomposition process were more conspicuous than the effect of litter qualities such as C/N ratio or lignin/N. The nutrient element content in the decomposing litter was gradually leached out, but heavy metals and Mg were accumulated in the decaying litter. This phenomenon was conspicuous at the serpentine site during the process of decomposition.

Characterization of Microbial Community in the Leachate Associated with the Decomposition of Entombed Pigs

  • Yang, Seung-Hak;Hong, Sun Hwa;Cho, Sung Back;Lim, Joung Soo;Bae, Sung Eun;Ahn, Heekwon;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1330-1335
    • /
    • 2012
  • Foot and mouth disease (FMD) is one of the acute infectious diseases in hoofed and even-toed mammals, including pigs, and it occurs via acute infection by Aphthovirus. When FMD is suspected, animals around the location of origin are typically slaughtered and buried. Other methods such as rendering, composting, and incineration have not been verified in practice in Korea. After the FMD incident, the regular monitoring of the microbial community is required, as microorganisms greatly modify the characteristics of the ecosystem in which they live. This is the result of their metabolic activities causing chemical changes to take place in the surrounding environment. In this study, we investigated changes in the microbial community during a 24 week period with DNA extracts from leachate, formed by the decomposition of buried pigs at a laboratory test site, using denaturing gradient gel electrophoresis (DGGE) with a genomic DNA. Our results revealed that Bacteroides coprosuis, which is common in pig excreta, and Sporanaerobacter acetigenes, which is a sulfur-reduced microbe, were continuously observed. During the early stages (0~2 weeks) of tissue decomposition, Clostridium cochlearium, Fusobacterium ulcerans, and Fusobacterium sp., which are involved in skin decomposition, were also observed. In addition, various microbes such as Turicibacter sanguinis, Clostridium haemolyticum, Bacteroides propionicifaciens, and Comamonas sp. were seen during the later stages (16~24 weeks). In particular, the number of existing microbial species gradually increased during the early stages, including the exponential phase, decreased during the middle stages, and then increased again during the later stages. Therefore, these results indicate that the decomposition of pigs continues for a long period of time and leachate is created continuously during this process. It is known that leachate can easily flow into the neighboring environment, so a long-term management plan is needed in burial locations for FMD-infected animals.

Prediction of Core Promoter Region with Dependency - Reflecting Decomposition Model (의존성 반영 분해모델에 의한 유전자의 핵심 프로모터 영역 예측)

  • 김기봉;박기정;공은배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.379-387
    • /
    • 2003
  • A lot of microbial genome projects have been completed to pour the enormous amount of genomic sequence data. In this context. the problem of identifying promoters in genomic DNA sequences by computational methods has attracted considerable research attention in recent years. In this paper, we propose a new model of prokaryotic core promoter region including the -10 region and transcription initiation site, that is Dependency-Reflecting Decomposition Model (DRDM), which captures the most significant biological dependencies between positions (allowing for non-adjacent as well as adjacent dependencies). DRDM showed a good result of performance test and it will be employed effectively in predicting promoters in long microbial genomic Contigs.