DOI QR코드

DOI QR Code

Development of a Theoretical Model for STEAM Education

융합인재교육(STEAM)을 위한 이론적 모형의 제안

  • Received : 2012.02.24
  • Accepted : 2012.03.22
  • Published : 2012.04.30

Abstract

This study attempted to propose a theoretical model for STEAM education, entitled to the Ewha-STEAM education model, which could provide more concrete guidelines for science educators and curriculum developers to execute STEAM ideas. We identified key knowledge and key competencies to nurture future creative/convergent human resources. Key knowledge included an understanding of core ideas cutting across traditional disciplinary boundaries as well as the nature of different disciplines. And additionally, key competencies implied such abilities as to explore the scientific world, to resolve problems, and to communicate and collaborate with others. We also added creativity and character as an essential part of key competencies. In order to provide more specific guidelines when developing, implementing, and evaluating STEAM curriculum, we suggested three elements of convergence to consider: 1) unit of convergence (i.e. concept/skills, problem/phenomenon, activity), 2) degree of convergence (i.e. multi-disciplinary, inter-disciplinary, extra-disciplinary), and 3) context of convergence (i.e. personal, societal, global). It is expected that the Ewha-STEAM education model would contribute towards diverse education communities understanding the direction of STEAM education and its educational potentials.

본 연구에서는 21세기 미래 융합 인재 양성을 위해 도입된 융합인재교육(STEAM 융합 교육)의 이론적 틀을 마련하고, 융합인재교육의 방향성을 구체화하며, 교사들이 현장에서 융합인재교육을 실행하는 데 필요한 가이드라인을 제공하기 위한 목적으로 개발된 Ewha-STEAM 융합모형을 소개하였다. Ewha-STEAM 융합모형은 미래 융합 인재가 갖추어야 할 핵심 지식과 핵심 역량을 도출하여 융합인재교육의 방향성을 명확히 하고자 하였다. 핵심 지식이란 창의 융합형 인재가 갖추어야 하는 기본 지식을 의미하며, 여러 학문을 연계하는 교과기반 통합 개념과 서로 다른 특성을 지닌 학문을 융합하기 위해 요구되는 각 학문의 본성에 대한 이해와 같은 소양 지식으로 나눌 수 있다. 핵심 역량이란 창의 융합형 인재가 갖추어야 하는 기본 역량으로, 각 교과를 기반으로 하되 여러 학문 영역에 전이되어 문제를 해결할 수 있는 교과기반 통합 역량과 미래 사회에서 새로움을 창조하고 지속가능한 발전을 이끌어나가기 위해 요구되는 창의 인성 역량으로 나누어 제시하였다. 마지막으로, 융합인재교육을 위한 교육과정을 운영하거나 교육프로그램을 개발할 때 고려해야 하는 세 가지 융합요소를 도출하였다. 첫 번째 요소는 융합 단위로서 학교 현장의 수업 운영 방식을 고려하여 개념/탐구과정, 문제/현상, 체험활동의 세 단개로 나누었다. 두 번째 요소는 융합 방식으로 서로 다른 교과목을 어느 정도 융합할 것인가에 대한 것이다. 융합 정도에 따라 다학문적, 간학문적, 탈학문적 융합으로 분류하였다. 마지막 세 번째 요소는 융합 맥락이다. 글로벌 사회에서의 융합은 개인차원을 넘어, 지역 사회, 나아가 전 세계적인 맥락에서 고려해 볼 수 있다. 이에 따라 개인적 맥락, 지역 사회적 맥락, 세계적 맥락의 세 단계로 나누었다. Ewha-STEAM 융합모형은 앞으로 융합인재 교육의 방향성과 잠재성에 대한 합의를 이끌어 내고, 양질의 융합교육 프로그램을 개발하거나 개발된 융합 프로그램을 평가하는데 큰 기여를 할 것으로 기대된다.

Keywords

References

  1. 교육과학기술부 (2010). 창의인재와 선진과학기술로 여는 미래 대한민국. 2011년 업무보고서.
  2. 교육과학기술부 (2011). 2009 개정 교육과정에 따른 과학과 교육과정. 교육과학기술부.
  3. 권혁수, 박경숙 (2009). 공학적 디자인: 과학, 기술, 공학, 수학교육의 촉진자. 과학교육연구지, 33(2), 207-219.
  4. 김재복 (2003). 통합교육 과정. 서울: 교육과학사
  5. 김진수 (2007). 기술교육의 새로운 통합방법인 STEM 교육의 탐색. 한국기술교육학회지, 7(3), 1-29.
  6. 김진수 (2011). STEAM 교육을 위한 피라미드 모형과 큐빅 모형. 한국현장과학교육학회 학술대회 심포지엄 주제발표.
  7. 문대영 (2008). STEM 통합 접근의 사전 공학 교육 프로그램 모형 개발. 공학교육연구, 11(2), 90-101
  8. 박현주 (2012, 2월). 우리나라 STEAM 교육을 위한 고려사항. 2012년 한국과학교육학회 총회 및 제61차 동계학술대회 발표.
  9. 배선아 (2011). 중학교 전기전자기술 영역의 활동 중심 STEM 교육프로그램 개발 및 적용. 대한공업교육학회지, 36(1), 1-22.
  10. 배선아, 금영충 (2009). 공업계열 전문계 고등학교 활동 중심 STEM 교육프로그램 개발 모형. 실과교육연구, 15(4), 345-368.
  11. 신영준, 한선관 (2011). 초등학교 교사들의 융합인재교육(STEAM)에 대한 인식 연구. 초등과학교육, 30(4), 514-523.
  12. 이효녕 (2012, 2월). 외국의 STEM/STEAM 교육 사례. 2012년 한국과학교육학회 총회 및 제61차 동계학술대회 발표.
  13. 한국과학기술단체총연합회 (2011). 미래융합과학 기술인재 양성을 위한 STEAM 교육. 2011 대한민국 과학기술연차대회 심포지엄.
  14. American Association for the Advancement of Science[AAAS]. (1989). Science for all Americans. Washington, DC: AAAS.
  15. California Science Teacher Association [CSTA] (2009). CSTA position statement on STEM career pathways. Available at: accessed Mar. 14, 2012. http://www.cascience.org/csta/pdf/stem_position.pdf.
  16. Choi, K., Lee, H., Shin, N., Kim, S., & Krajcik, J. (2011). Re-conceptualization of scientific literacy in South Korea for the 21st century. Journal of Research in Science Teaching, 48(6), 670-697. https://doi.org/10.1002/tea.20424
  17. Clark, A. C., & Ernst, J. V. (2007). A model for the integration of science, technology, engineering, and mathematics. The Technology Teacher, 66(4), 24-26.
  18. Drake, S. M. (1993). 통합 교육 과정(박영무, 강현석, 허영식, 김인숙 역). 서울: 원미사. (번역 2006 출판).
  19. Duschl, R. A., Schweingruber, H. A., & Shouse, A. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, D.C., National Academies Press.
  20. Ede, S. (2005). Art and science. London and New York: I.B.Tauris.
  21. Fogarty, R. (1991). Ten ways to integrated curriculum. Educational Leadership, 49(2), 61-65.
  22. International Technology Education Association [ITEA] (2007). Standards for technological literacy: Content for the study of technology (3rd Ed.). Reston. VA: Author.
  23. Kuenzi, J. J. (2008). Science, Technology, Engineering, and Mathematics (STEM) education: Background, federal policy, and legislative action. Congressional Research Service Reports, Paper 35. accessed Mar. 14, 2012. http://digitalcommons.unl.edu/crsdocs/35.
  24. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.
  25. Meade, S. D., & Dugger, W. F. (2004). Reporting on the status of technology education in the U.S.: The data on STL and AETL usage is positive in the respect that more and more states are becoming informed about what technology/ technological literacy encompasses. The Technology Teacher, 63, 29-35.
  26. Merrill, C., Cardon, P., Helgeson, K., & Warner, S. (2006). Technology education research symposium: An actional research approach. The Technology Teacher, 65, 6-10.
  27. National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. Reston. VA: Author.
  28. National Research Council [NRC]. (2010). Conceptual framework for new science education standards. Available at: accessed Mar. 14, 2012. http://www7.nationalacademies. org/bose/Standards_Framework_Homepage.html.
  29. Nicholls, G. M., Wolfe, H., Besterfield- Sacre, M., Shuman, L. J., & Larpkiattaworn, S. (2007). A method for identifying variables for predicting STEM enrollment. Journal of Engineering Education, 96(1), 33-44. https://doi.org/10.1002/j.2168-9830.2007.tb00913.x
  30. Sanders, M. (2006, November). A rationale for new approaches to STEM education and STEM education graduate programs. Paper presented at the 93rd Mississippi Valley Technology Teacher Education Conference, Nashville, TN.
  31. Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20-26.
  32. Sanders, M., Kwon, H., Park. K., & Lee, H. (2011). Integrative STEM(Science, Technology, Engineering and Mathematics) education: Contemporary Trends and Issues, 중등교육연구, 59(3), 729-762.
  33. Smith, C. L., Wiser, M., Anderson, C. W., Krajcik, J., (2006). Implications of research on children's learning for standards and assessment: A proposed learning progression for matter and the atomic molecular. Theory Measurement: Interdisciplinary Research and Perspectives, 14(1&2), 1-98.
  34. Stevens, S., Sutherland, L., & Krajcik, J.S., (2009). The big ideas of nanoscale science and engineering. Arlington, VA: National Science Teachers Association Press.
  35. van Langen, A., & Dekkers, H. (2005). Cross-national differences in participating in tertiary science, technology, engineering and mathematics education. Comparative Education, 41(3), 329-350. https://doi.org/10.1080/03050060500211708
  36. Wilson, E. O. (1998). 지식의 대통합: 통섭(최재천, 장대익 역). 서울: (주) 사이언스 북스. (번역 2005 출판).
  37. Yakman, G. (2006). STEM pedagogical commons for contextual learning. Unpublished paper for EDCI 5574 STEM Education Pedagogy. Virginia Tech.
  38. Witz, K. G., & Lee, H. (2009). Science as an ideal: Teachers' orientations to science and science education. Journal of Curriculum Studies, 41(3), 409-431. https://doi.org/10.1080/00220270802165640

Cited by

  1. An Analysis of Core Competence and Core Element on the STEAM Program in the Research Report of School vol.25, pp.4, 2013, https://doi.org/10.13000/JFMSE.2013.25.4.898
  2. Analysis on the Convergence for Knowledge Fusion in the Field of the Engineering, Science, Aesthetics, Humanities and Social Sciences vol.25, pp.5, 2013, https://doi.org/10.13000/JFMSE.2013.25.5.1031
  3. Seeking a Way for the Connection of Curriculum of Infants and Children Based on the Area of Inquiry in Daily Life -Centered on the Early Learning Standards in America- vol.10, pp.6, 2014, https://doi.org/10.14698/jkcce.2014.10.6.223
  4. Analysis of Articles Related STEAM Education using Network Text Analysis Method vol.33, pp.4, 2014, https://doi.org/10.15267/keses.2014.33.4.674
  5. The Development and Validation of Instrument for Measuring High School Students' Attitude Toward Convergence vol.34, pp.2, 2014, https://doi.org/10.14697/jkase.2014.34.2.0123
  6. Development and Application of Integrative STEM (Science, Technology, Engineering and Mathematics) Education Model Based on Scientific Inquiry vol.34, pp.2, 2014, https://doi.org/10.14697/jkase.2014.34.2.0063
  7. Examination of the Practical Model for STEAM Education through Case Studies vol.27, pp.6, 2015, https://doi.org/10.13000/JFMSE.2015.27.6.1676
  8. The Development and Application of STEAM Education Program based on Kinetic Art vol.34, pp.3, 2015, https://doi.org/10.15267/keses.2015.34.3.276
  9. Understanding STEM, STEAM Education, and Addressing the Issues Facing STEAM in the Korean Context vol.35, pp.4, 2015, https://doi.org/10.14697/jkase.2015.35.4.0709
  10. Analysis of Korean Elementary Pre-Service Teachers’ Changing Attitudes About Integrated STEAM Pedagogy Through Developing Lesson Plans vol.15, pp.4, 2017, https://doi.org/10.1007/s10763-015-9709-3
  11. A Theoretical Framework for Developing an Intercultural STEAM Program for Australian and Korean Students to Enhance Science Teaching and Learning pp.1573-1774, 2019, https://doi.org/10.1007/s10763-018-9922-y
  12. Current status and remaining challenges of STEAM : An analysis from the perspective of Yungbokhap education vol.31, pp.1, 2012, https://doi.org/10.15708/kscs.31.1.201303.007
  13. Development and Application of STEAM Program Using Local Resources vol.61, pp.1, 2012, https://doi.org/10.25152/ser.2013.61.1.1
  14. An Instructional Model Design of Convergence Project for Cultivating Industrial Convergence Talent in Higher Education vol.25, pp.3, 2012, https://doi.org/10.17927/tkjems.2013.25.3.543
  15. Application and Development of a Storytelling Teaching-learning Method Using the Science Writing Heuristic vol.17, pp.3, 2012, https://doi.org/10.24231/rici.2013.17.3.709
  16. The Effects of the science teaching strategy using the writing-oriented mind map in the general chemistry laboratory vol.17, pp.4, 2012, https://doi.org/10.24231/rici.2013.17.4.1343
  17. 중등학생들이 생각하는 융합인재에 대한 이미지 유형 탐색 vol.33, pp.7, 2012, https://doi.org/10.14697/jkase.2013.33.7.1486
  18. 공학교육에서의 팀티칭기반 융합프로젝트중심 교수학습모형의 개발 vol.17, pp.2, 2014, https://doi.org/10.18108/jeer.2014.17.2.11
  19. Creative and Critical Thinking Skills-Reinforced and STEAM-Oriented Teaching Strategy of Science for Students' Extracurricular Activities through a Junior High School Intervention Study Program vol.18, pp.2, 2012, https://doi.org/10.24231/rici.2014.18.2.321
  20. Analysing science and arts unified activity patternsin the ‘three to five-year-old Nuri Course teacher’s manual’based on STEAM vol.34, pp.4, 2012, https://doi.org/10.18023/kjece.2014.34.4.005
  21. The Effects of Engineering Design and Scientific Inquiry based STEAM Education Programs on the Interest, Self-Efficacy and Career Choices of Middle School Students vol.18, pp.3, 2012, https://doi.org/10.24231/rici.2014.18.3.513
  22. An analysis of STEAM activities in the middle school science ① textbooks published based on the 2009 Revised National Curriculum vol.18, pp.4, 2012, https://doi.org/10.24231/rici.2014.18.4.1033
  23. 융합교육 핵심요인과 기대효과에 대한 델파이 분석 vol.25, pp.1, 2012, https://doi.org/10.9722/jgte.2015.25.1.37
  24. 앱인벤터를 활용한 STEAM 프로그램 개발 -초등학교 과학의 '속력' 개념을 중심으로- vol.15, pp.4, 2012, https://doi.org/10.5392/jkca.2015.15.04.530
  25. Development Model of STEAM based Practical Arts Education Program for Creativity·Character Education vol.21, pp.2, 2012, https://doi.org/10.17055/jpaer.2015.21.2.1
  26. Analysis of KOFAC STEAM education program vol.21, pp.2, 2012, https://doi.org/10.17055/jpaer.2015.21.2.25
  27. How to Teach Linguistics Courses in College: A Yungbokhap Educational Approach vol.31, pp.2, 2012, https://doi.org/10.18627/jslg.31.2.201508.337
  28. 수학 기반 융합 수업 모형의 가능성 탐색 vol.18, pp.2, 2015, https://doi.org/10.7468/jksmec.2015.18.2.107
  29. Possibilities of Integrated HOS(History of Science) Cases as a Subject of Environmental Education vol.28, pp.4, 2012, https://doi.org/10.17965/kjee.2015.28.4.242
  30. 2009 개정 교육과정에 따른 초등수학교과서의 STEAM 요소 분석: 3~4학년군을 중심으로 vol.18, pp.3, 2015, https://doi.org/10.7468/jksmec.2015.18.3.235
  31. A Study of Creative Thinking through A-STEAM-based Artistic Expression Activities vol.44, pp.None, 2012, https://doi.org/10.35657/jae.2016.44.0.004
  32. The Influences of STEAM Program Using Infragram for Plant Health Monitoring on Elementary Student's Creative Problem Solving Ability, Scientific Process Skills and Affective Domain vol.44, pp.1, 2016, https://doi.org/10.15717/bioedu.2016.44.1.72
  33. Development learning materials for Social Studies-Science convergence education vol.48, pp.1, 2012, https://doi.org/10.35557/trce.48.1.201603.005
  34. A comparative study of perceptions on STEAM education by the primary and secondary school teachers participated in the advanced STEAM teacher training program vol.20, pp.1, 2012, https://doi.org/10.24231/rici.2016.20.1.50
  35. STEAM 프로그램의 문제해결활동이 중학생의 메타인지에 미치는 영향 vol.40, pp.1, 2012, https://doi.org/10.21796/jse.2016.40.1.17
  36. 공업계열 특성화고 학생들의 기술의 본성(NOT)에 대한 인식 탐구 - 과학기술사 수업을 중심으로 - vol.45, pp.1, 2012, https://doi.org/10.15717/bioedu.2017.45.1.199
  37. 융합인재교육(STEAM)에 대한 유아교사의 인식 및 활성화 방안 vol.13, pp.5, 2012, https://doi.org/10.14698/jkcce.2017.13.05.065
  38. 공학중심의 융합프로젝트 교수학습모형의 교육적 효과 vol.21, pp.1, 2018, https://doi.org/10.18108/jeer.2018.21.1.3
  39. A Study on the Development of STEAM education program for enhance Visual expression ability vol.52, pp.None, 2018, https://doi.org/10.35657/jae.2018.52..011
  40. 교과 융합의 관점에서 분류하기 지도방안 고찰 vol.21, pp.2, 2012, https://doi.org/10.7468/jksmec.2018.21.2.193
  41. A Research for the Concepts and Competencies of Convergence Dance Educator vol.69, pp.2, 2012, https://doi.org/10.16877/kjds.69.2.201806.29
  42. 영재학교의 수학 중심 융합 교육과정 평가 사례 연구 vol.34, pp.4, 2012, https://doi.org/10.7858/eamj.2018.033
  43. The Development of Assessment Framework for Integrated Education Using the Focus Group Interview Analysis vol.22, pp.6, 2018, https://doi.org/10.24231/rici.2018.22.6.386
  44. 융합지향 조직 구축을 위한 융합인재 측정 도구 개발 vol.20, pp.1, 2012, https://doi.org/10.15813/kmr.2019.20.1.004
  45. 은대리 물거미 서식지의 3D 파노라마 가상야외학습장 융합교육 프로그램 개발 vol.19, pp.10, 2019, https://doi.org/10.5392/jkca.2019.19.10.607
  46. STEAM 수업에서 스마트테크놀로지 적용에 대한 초등교사의 인식 -적용 유형과 어려움 및 지원을 중심으로- vol.39, pp.6, 2012, https://doi.org/10.14697/jkase.2019.39.6.777
  47. DEVELOPING AN INQUIRY AND HANDS-ON TEACHING MODEL TO GUIDE STEAM LESSON PLANNING FOR KINDERGARTEN CHILDREN vol.19, pp.6, 2020, https://doi.org/10.33225/jbse/20.19.908
  48. Space for STEAM: New Creativity Challenge in Education vol.12, pp.None, 2021, https://doi.org/10.3389/fpsyg.2021.586318
  49. Unlocking the potential of STEAM education: How exemplary teachers navigate assessment challenges vol.114, pp.6, 2012, https://doi.org/10.1080/00220671.2021.1990002