DOI QR코드

DOI QR Code

Small Group Interaction and Norms in the Process of Constructing a Model for Blood Flow in the Heart

심장 혈액 흐름의 모형 구성 과정에서 나타난 소집단 상호작용과 소집단 규범

  • Received : 2012.02.06
  • Accepted : 2012.02.20
  • Published : 2012.04.30

Abstract

This study aims to identify unique small group norms and their influence on the process of constructing a scientific model. We developed instructional materials for the construction of a model of blood flow in the heart and conducted research on eighth-grade students from one middle school. We randomly selected 10 small groups, and videotaped and recorded their dialogues and behaviors. The data was categorized according to the types of interaction and then analyzed to investigate the characteristics of group norms and models in one or two representative groups for each type. The results show that the types of interaction, the quality of the group models, and the group norms were different in each group. Even though one teacher guided students through the same task in the inquiry context, each group revealed different patterns of discourse and behavior, which were based on norms of cognitive responsibility, the need for justification, participation, and membership. With the exception of one group, there was little cognitive responsibility and justification for students' opinions. Ultimately, these norms influenced the model construction of small groups. A group that forms norms to encourage the active participation and justify members' opinions with cognitive responsibility was encouraged to do inferential thinking and construct a group model close to the target model. This study has instructional implications for the establishment of a classroom environment that facilitates learning through small group activities.

이 연구는 자연스러운 소집단 탐구 맥락에서 형성된 집단의 고유한 규범을 밝혀내고, 소집단 규범이 과학적 모형 구성에 미치는 영향을 알아보는 것을 목적으로 한다. 이를 위해 학생들의 상호작용을 잘 드러낼 수 있는 심장 혈액 흐름의 모형 구성 수업을 개발하였고, 서울 소재 중학교 2학년을 대상으로 수업을 진행하였다. 이 가운데 임의로 10개의 소집단을 추출하여 학생들의 담화와 활동을 녹음하고 비디오 촬영을 하였다. 수집한 자료는 먼저 집단의 상호작용 유형을 분류하였고, 각 유형을 대표적으로 보여주는 5개 집단에서 나타나는 규범과 모형의 특징을 분석하였다. 연구 결과, 집단마다 다양한 상호작용 유형을 보였으며, 소집단에서 구성한 모형의 질과 협력 및 모형 구성을 위한 규범 또한 집단마다 다르게 나타났다. 동일한 교사의 지도를 받는 탐구 맥락에서 학생들이 동일한 과제를 진행한다고 하더라도, 각 집단의 인지적인 책임감, 정당화에 대한 필요성, 협력과 참여, 멤버십에 대한 규범이 바탕이 되어 집단마다 다른 담화와 행동을 보였다. 또한, 한 집단을 제외하고, 모형 구성을 위한 인지적 책임감과 정당화와 같은 규범은 잘 발달하지 않았다. 이러한 규범은 궁극적으로 집단 모형 구성에 영향을 미쳤다. 구성원들의 적극적인 참여를 독려하여 협력을 촉진하고, 인지적 책임감을 가지고 자신의 의견을 정당화하면서 모형 구성을 촉진하는 규범을 형성하고 있는 집단은 구성원들의 추론적 사고를 촉발하였고 보다 목표 모형에 가까운 집단의 공동 모형을 구성하였다. 이 연구 결과는 소집단 활동을 통한 학습을 촉진하는 교실 환경을 구축하고, 이와 관련된 교사 교육 방안을 모색하는데 시사점을 제공한다.

Keywords

References

  1. 국립국어원 (2012). 표준국어대사전. 국립국어교육원 표준국어대사전 홈페이지. http://stdweb2.korean.go.kr/main.jsp.
  2. 김찬종, 이선경 (2005). 과학교실의 수업담화와 사회-과학적 규범의 특징: 초임 과학교사의 사례 연구. 한국교원교육연구, 22(3), 359-386.
  3. 박지영 (2009). 사회 속 과학 쟁점에 대한 소집단 논변활동의 이해: 교육대학교 학생들의 의사소통 분위기를 중심으로. 서울대학교 박사학위 논문.
  4. 방정숙 (2001). 사회수학적 규범과 수학교실 문화. 대한수학교육학회지, 11(2), 273-289.
  5. 방정숙 (2004). 초등수학교실문화의 개선: 사회수학적 규범과 수학적 관행. 대한수학교육학회지, 14(3), 283-304.
  6. 정현철, 박영신, 황동주 (2008). 한국영재교육에서 소집단 탐구활동에 대한 인식 분석. 한국지구과학회지, 29(2), 151-162.
  7. 조혜자, 방희정 (2006). 암묵적인 자기 범주화의 성차. 한국심리학회지: 여성, 11(2), 245-265.
  8. Anderson, J. R., Reder, L. M., & Simon, H. A. (1997). Situative versus cognitive perspectives: Form versus substance. Educational Researcher, 26(1), 18-21.
  9. Blatchford, P., & Baines, E. (2010). Peer relations in school. In K. Littleton, C. Wood & K. Starrman (Eds.), International Handbook of Psychology in Education. Bingley, UK: Emerald.
  10. Bottcher, F., & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science and Education, 20, 103-140. https://doi.org/10.1007/s11191-010-9304-5
  11. Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235-251. https://doi.org/10.1207/s15326985ep2803_4
  12. Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64, 1-35. https://doi.org/10.3102/00346543064001001
  13. Crawford, B. A., Krajcik, J. S., & Marx, R. W. (1999). Elements of a community of learners in a middle school science classroom. Science Education, 83(6), 701-723. https://doi.org/10.1002/(SICI)1098-237X(199911)83:6<701::AID-SCE4>3.0.CO;2-2
  14. Dixon, J. K., Egendoerfer, L. A., & Clements, T. (2009). Do they really need to raise their hands? Challenging a traditional social norm in a second grade mathematics classroom. Teaching and Teacher Education, 25(8), 1067-1076. https://doi.org/10.1016/j.tate.2009.04.011
  15. Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672. https://doi.org/10.1002/sce.3730750606
  16. Graham, C. R. (2003). A model of norm development for computer-mediated teamwork. Small Group Research, 34(3), 322-352. https://doi.org/10.1177/1046496403034003003
  17. Greeno, J. G. (1997). On claims that answer the wrong questions. Educational Researcher, 26(1), 5-17.
  18. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  19. Hogan, K., Nastasi, B. K., & Pressley, M. (1999). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction, 17(4), 379-432. https://doi.org/10.1207/S1532690XCI1704_2
  20. Howe, C. J., & McWilliam, D. (2006). Opposition in social interaction amongst children: Why intellectual benefits do not mean social costs. Social Development, 15(2), 205-231. https://doi.org/10.1111/j.1467-9507.2006.00337.x
  21. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  22. Johnson, D. W., & Johnson, R. T. (1989). Cooperation and competition: Theory and research. Edina, MN: Interaction Book Company.
  23. Johnson, D. W., & Johnson, R. T. (1990). Cooperative learning and achievement. In S. Sharan (Eds.), Cooperative learning: Theory and research (pp. 173-202). New York: Praeger.
  24. Justi, R. S., & Gilbert, J. K. (2002). Science teachers'knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273-1292. https://doi.org/10.1080/09500690210163198
  25. Kumpulainen, K., & Wray, D. (2002). Classroom interaction and social learning: From theory to practice. Routledge, New York. p. 170.
  26. Marton, F., & Saljo, R. (1976). On qualitative differences in learning. II. Outcome as a function of the learner's conception of the task. British Journal of Educational Psychology, 46, 115-127. https://doi.org/10.1111/j.2044-8279.1976.tb02304.x
  27. Oliveira, A. W., & Sadler, T. D. (2008). Interactive patterns and conceptual convergence during student collaborations in science. Journal of Research in Science Teaching, 45(5), 634-658. https://doi.org/10.1002/tea.20211
  28. Owen, W. F. (1985). Metaphor analysis of cohesiveness in small discussion groups. Small Group Behavior, 16, 415-424. https://doi.org/10.1177/0090552685163011
  29. Postmes, T., Spears, R., & Lea, M. (2000). The formation of group norms in computer-mediated communication. Human Communication Research, 26(3), 341-371. https://doi.org/10.1111/j.1468-2958.2000.tb00761.x
  30. Richmond, G., & Striley, J. (1996). Making meaning in classrooms: Social processes in small-group discourse and scientific knowledge building. Journal of Research in Science Teaching, 33(8), 839-858. https://doi.org/10.1002/(SICI)1098-2736(199610)33:8<839::AID-TEA2>3.0.CO;2-X
  31. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
  32. Sandoval, W. A., & Millwood, K. A. (2008). What can argumentation tell us about epistemology? In S. Erduran, & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research. (pp. 71-88). New York: Springer.
  33. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwarz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  34. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  35. Shepardson, D. P., & Britsch, S. J. (2006). Zones of interaction: Differential access to elementary science discourse. Journal of Research in Science Teaching, 43(5), 443-466. https://doi.org/10.1002/tea.20104
  36. Stamovlasis, D., Dimos, A., & Tsaparlis, G. (2006). A study of group interaction processes in learning lower-secondary physics. Journal of Research in Science Teaching, 43(6), 556-576. https://doi.org/10.1002/tea.20134
  37. Terry, D. J., & Hogg, M. A. (1996). Group norms and the attitude-behavior relationship: A role for group identification. Personality and Social Psychology Bulletin, 22(8), 776-793. https://doi.org/10.1177/0146167296228002
  38. Towns, M. H., & Grant, E. R. (1997). "I believe I will go out of this class actually knowing something": Cooperative learning activities in physical chemistry. Journal of Research in Science Teaching, 34(8), 819-835. https://doi.org/10.1002/(SICI)1098-2736(199710)34:8<819::AID-TEA5>3.0.CO;2-Y
  39. Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 841-873). New York: Macmillan.
  40. White, K. M. & Wellington, L. (2009). Predicting participation in group parenting education in an Australian sample: The role of attitudes, norms, and control factors. The Journal of Primary Prevention, 30, 173-189. https://doi.org/10.1007/s10935-009-0167-y
  41. Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentations, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477. https://doi.org/10.2307/749877
  42. Yackel, E., Cobb, P., & Wood, T. (1991). Small-group interactions as a source of learning opportunities in second-grade mathematics. Journal for Research in Mathematics Education. 22(5), 390-408. https://doi.org/10.2307/749187
  43. Yager, S., Johnson, D. W., & Johnson, R. T. (1985). Oral discussion, group-to-individual transfer, and achievements in cooperative learning groups. Journal of Educational Psychology, 77(1), 60-66. https://doi.org/10.1037/0022-0663.77.1.60
  44. Zajac, R. J., & Hartup, W. W. (1997). Friends as coworkers: research review and classroom implications. The Elementary School Journal, 98, 3-13. https://doi.org/10.1086/461881
  45. Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for Collective cognitive responsibility in knowledge-building communities. The Journal of The Learning Sciences, 18(1), 7-44. https://doi.org/10.1080/10508400802581676

Cited by

  1. Features of the Sociocultural Context of Science Subject Teacher's Experiment Classes in Elementary School - Focusing on the Sociocultural Factors and Their Interactions - vol.33, pp.2, 2014, https://doi.org/10.15267/keses.2014.33.2.217
  2. Characteristics of Social Interaction in Scientific Modeling Instruction on Combustion in Middle School vol.58, pp.4, 2014, https://doi.org/10.5012/jkcs.2014.58.4.393
  3. Exploring Small Group Features of the Social-Construction Process of Scientific Model in a Combustion Class vol.35, pp.2, 2015, https://doi.org/10.14697/jkase.2015.35.2.0217
  4. A Case Study on the Features of Classroom Norms Formed in Inquiry Activities of Elementary Science Classes vol.35, pp.2, 2015, https://doi.org/10.14697/jkase.2015.35.2.0303
  5. An Analysis of the Verbal Interaction Patterns of Science-Gifted Students in Science Inquiry Activity vol.35, pp.2, 2015, https://doi.org/10.14697/jkase.2015.35.2.0333
  6. 과학적 모델의 사회적 구성 수업에서 구현된 두 과학 교사의 실천적 지식의 내용 vol.33, pp.4, 2012, https://doi.org/10.14697/jkase.2013.33.4.807
  7. 집단지성을 활용한 예비교사들의 과학지식 형성과정 탐색 vol.33, pp.5, 2013, https://doi.org/10.14697/jkase.2013.33.5.963
  8. The Process of Cognitive Collaboration of Ninth-Grade Students in Genetic Problem Solving Activity vol.44, pp.2, 2016, https://doi.org/10.15717/bioedu.2016.44.2.250
  9. 중등 과학교육에서 소집단을 활용한 교수학습 연구 분석 및 '소집단 연구' 방법론 고찰 vol.45, pp.3, 2012, https://doi.org/10.15717/bioedu.2017.45.3.437
  10. 소집단 활동과 전체 논의 과정에서 나타나는 중학생들의 배설에 관한 사전 모형 탐색 vol.45, pp.4, 2017, https://doi.org/10.15717/bioedu.2017.45.4.491
  11. Exploring Change in Properties of Conceptions Represented in Students’ Modeling with Smart Technology and Investigating Instructional Supports for the Change vol.46, pp.3, 2012, https://doi.org/10.15717/bioedu.2018.46.3.300