DOI QR코드

DOI QR Code

Cloning and Functional Verification of the Candida milleri HIS3 Gene Encoding Imidazoleglycerol Phosphate Dehydratase

  • Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kwun, Se-Young (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Han, Seung-Ah (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Jong-Sub (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2012.07.30
  • Accepted : 2012.08.08
  • Published : 2012.10.28

Abstract

The entire nucleotide sequence of the HIS3 gene encoding imidazoleglycerol phosphate dehydratase (IGPD) in yeast Candida milleri CBS 8195 was determined. Sequence analysis revealed an open-reading frame of C. milleri HIS3 that spans 678 bp, encodes 226 amino acids, and shares 80.5% amino acid identity to Torulaspora delbrueckii IGPD, followed by that to Saccharomyces cerevisiae (79.6%). The cloned HIS3 gene complemented a his3 mutation in S. cerevisiae, suggesting that it encodes a functional IGPD in C. milleri CBS 8195. A new auxotrophic marker is now available for acid-tolerant yeast C. milleri.

Keywords

References

  1. Ames, B. N. 1957. The biosynthesis of histidine; D-erythroimidazoleglycerol phosphate dehydrase. J. Biol. Chem. 228:131-143.
  2. Baganz, F., A. Hayes, D. Marren, D. C. Gardner, and S. G. Oliver. 1997. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast 13: 1563-1573. https://doi.org/10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6
  3. Basabe, L., I. Dominguez, and F. P. Chavez. 2004. Cloning and sequence analysis of the Candida utilis HIS3 gene. Biomolec.Eng. 21: 15-20. https://doi.org/10.1016/S1389-0344(02)00114-4
  4. Boneau, C. A. 1960. The effects of violations of assumptions underlying the test. Psychol. Bull. 57: 49-64.
  5. Di Segni, G., S. Gastaldi, M. Zamboni, and G. P. Tocchini-Valentini. 2011. Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc. Natl. Acad. Sci. USA 108: 17082-17086. https://doi.org/10.1073/pnas.1114648108
  6. Fink, G. R. 1964. Gene-enzyme relations in histidine biosynthesis in yeast. Science 146: 525-527. https://doi.org/10.1126/science.146.3643.525
  7. Gietz, R. D. and R. A. Woods. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96.
  8. Glynn, S. E., P. J. Baker, S. E. Sedelnikova, C. L. Davies, T. C. Eadsforth, C. W. Levy, et al. 2005. Structure and mechanism of imidazoleglycerol-phosphate dehydratase. Structure 13: 1809-1817. https://doi.org/10.1016/j.str.2005.08.012
  9. Gullo, M., A. D. Romano, A. Pulvirenti, and P. Giudici. 2003. Candida humilis-dominant species in sourdoughs for the production of durum wheat bran flour bread. Int. J. Food Microbiol. 80: 55-59. https://doi.org/10.1016/S0168-1605(02)00121-6
  10. Hinnebusch, A. G. 1984. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81: 6442-6446. https://doi.org/10.1073/pnas.81.20.6442
  11. Hope, I. A. and K. Struhl. 1985. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: Implications for general control of amino acid biosynthetic genes in yeast. Cell 43:177-188. https://doi.org/10.1016/0092-8674(85)90022-4
  12. Hope, I. A. and K. Struhl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885-894. https://doi.org/10.1016/0092-8674(86)90070-X
  13. Jackson, A. P., J. A. Gamble, T. Yeomans, G. P. Moran, D. Saunders, D. Harris, et al. 2009. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 19: 2231-2244. https://doi.org/10.1101/gr.097501.109
  14. Kitada, K., E. Yamaguchi, and M. Arisawa. 1995. Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene 165: 203-206. https://doi.org/10.1016/0378-1119(95)00552-H
  15. Moslehi-Jenabian, S., L. L. Pedersen, and L. Jespersen. 2010. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2: 449-473. https://doi.org/10.3390/nu2040449
  16. Mount, R. C., B. E. Jordan, and C. Hadfield. 1996. Transformation of lithium-treated yeast cells and the selection of auxotrophic and dominant markers. Methods Molec. Biol. 53: 139-145.
  17. Park, E. H., D. H. Lee, J. H. Seo, and M. D. Kim. 2011. Cloning and characterization of a glyoxalase I gene from the osmotolerant yeast Candida magnoliae. J. Microbiol. Biotechnol. 21: 277-283.
  18. Pronk, J. T. 2002. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 68: 2095-2100. https://doi.org/10.1128/AEM.68.5.2095-2100.2002
  19. Rosenbluh, A., M. Mevarech, Y. Koltin, and J. A. Gorman. 1985. Isolation of genes from Candida albicans by complementation in Saccharomyces cerevisiae. Mol. Gen. Genet. 200: 500-502. https://doi.org/10.1007/BF00425739
  20. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning, pp. 1.119-1.122. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  21. Struhl, K. and R. W. Davis. 1977. Production of a functional eukaryotic enzyme in Escherichia coli: Cloning and expression of the yeast structural gene for imidazole-glycerolphosphate dehydratase (his3). Proc. Natl. Acad. Sci. USA 74: 5255-5259. https://doi.org/10.1073/pnas.74.12.5255
  22. Sychrova, H., V. Braun, and J. L. Souciet. 2000. Sequence and organization analyses of a Zygosaccharomyces rouxii DNA fragment containing the HIS3 gene. Yeast 16: 581-587. https://doi.org/10.1002/(SICI)1097-0061(200005)16:7<581::AID-YEA545>3.0.CO;2-4
  23. Thireos, G., M. D. Penn, and H. Greer. 1984. 5' Untranslated sequences are required for the translational control of a yeast regulatory gene. Proc. Natl. Acad. Sci. USA 81: 5096-5100. https://doi.org/10.1073/pnas.81.16.5096
  24. Weinstock, K. G. and J. N. Strathern. 1993. Molecular genetics in Saccharomyces kluyveri: The HIS3 homolog and its use as a selectable marker gene in S. kluyveri and Saccharomyces cerevisiae. Yeast 9: 351-361. https://doi.org/10.1002/yea.320090405
  25. Yang, Z. 1997. PAML: A program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13: 555-556.
  26. You, T., I. Stansfield, M. C. Romano, A. J. P. Brown, and G. M. Coghill. 2011. Analysing GCN4 translational control in yeast by stochastic chemical kinetics modelling and simulation. BMC Syst. Biol. 5: 131. https://doi.org/10.1186/1752-0509-5-131

Cited by

  1. Cloning of the Xylose Reductase Gene of Candida milleri vol.23, pp.7, 2013, https://doi.org/10.4014/jmb.1305.05012