DOI QR코드

DOI QR Code

A Study on the Electrochemical Synthesis of L-DOPA Using Oxidoreductase Enzymes: Optimization of an Electrochemical Process

  • Rahman, Siti Fauziyah (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University) ;
  • Gobikrishnan, Sriramulu (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University) ;
  • Indrawan, Natarianto (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University) ;
  • Park, Seok-Hwan (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University) ;
  • Park, Jae-Hee (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University) ;
  • Min, Kyoungseon (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Yoo, Young Je (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Don-Hee (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University)
  • Received : 2012.06.19
  • Accepted : 2012.07.18
  • Published : 2012.10.28

Abstract

Levodopa or L-3,4-dihydroxyphenylalanine (L-DOPA) is the precursor of the neurotransmitter dopamine. L-DOPA is a famous treatment for Parkinson's disease symptoms. In this study, electroenzymatic synthesis of L-DOPA was performed in a three-electrode cell, comprising a Ag/AgCl reference electrode, a platinum wire auxiliary electrode, and a glassy carbon working electrode. L-DOPA had an oxidation peak at 376 mV and a reduction peak at -550 mV. The optimum conditions of pH, temperature, and amount of free tyrosinase enzyme were pH 7, $30^{\circ}C$, and 250 IU, respectively. The kinetic constant of the free tyrosinase enzyme was found for both cresolase and catacholase activity to be 0.25 and 0.4 mM, respectively. A cyclic voltammogram was used to investigate the electron transfer rate constant. The mean heterogeneous electron transfer rate ($k_e$) was $5.8{\times}10^{-4}$ cm/s. The results suggest that the electroenzymatic method could be an alternative way to produce L-DOPA without the use of a reducing agent such as ascorbic acid.

Keywords

References

  1. Andriani, D., C. S. Sunwoo, H. W. Ryu, B. Prasetya, and D. H. Park. 2012. Immobilization of cellulose from newly isolated strain Bacillus subtilis TD6 using calcium alginate as support material. Bioprocess Biosyst. Eng. 35: 29-33. https://doi.org/10.1007/s00449-011-0630-z
  2. Ardakani, M. M., H. Rajabi, and H. Bietollahi. 2009. Electrocatalytic oxidation of cysteine by indigo carmine modified glassy carbon electrode. J. Argent. Chem. Soc. 97: 106-115.
  3. Ates, S., E. Cortenlioglu, E. Bayraktar, and U. Mehmetoglu. 2007. Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzyme Microb. Technol. 40: 683-687. https://doi.org/10.1016/j.enzmictec.2006.05.031
  4. Barbero, C. J. J. Silber, and L. Sereno. 1988. Studies of surfacemodified glassy carbon electrode obtained by electrochemical treatment. J. Electroanal. Chem. 248: 321-340. https://doi.org/10.1016/0022-0728(88)85093-9
  5. Bard, A. J. and L. R. Faulkner. 2001. Electrochemical Methods: Fundamentals and Applications, pp. 92-98, 2nd Ed. Wiley, New York.
  6. Blaser, H. U. and E. Schmidt (eds.). 2004. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches, and Solutions, pp. 23-38. Wiley-VCH Verlag GmbH & Co, Weinheim.
  7. Chuang, G.-S., A.-C. Chao, M.-S. Chiou, and S.-S. Shyu. 2005. Immobilization of tyrosinase on chitosan - An optimal approach to enhance the productivity of L-DOPA from L-tyrosine. J. Chin. Chem. Soc. 52: 353-362.
  8. Hedge, R. N., B. E. Kumara Swamy, B. S. Sherigara, and S. T. Nandibewoor. 2008. Electro-oxidation of atenolol at a glassy carbon electrode. Int. J. Electrochem. Sci. 3: 302-314.
  9. Ho, P. Y., M. S. Chiou, and A. C. Chao. 2003. Production of L-dopa by tyrosinase immobilized on modified polystyrene. Appl. Biochem. Biotechnol. 3: 139-152.
  10. Huang, S.-Y., Y.-W. Shen, and H.-S. Chan. 2002. Development of a bioreactor operation strategy for L-DOPA production using Stizolobium hassjoo suspension culture. Enzyme Microb. Technol. 30: 779-791. https://doi.org/10.1016/S0141-0229(02)00058-3
  11. Katzung, B. G. 2004. Basic and Clinical Pharmacology, pp. 634-655, 9th Ed. McGraw-Hill, San Francisco.
  12. Knowles, W. S., M. J. Sabacky, and B. D. Vineyad. 1977. LDOPA process and intermediates. United States Patent. US4005127.
  13. Kyanagi, T., T. Katayama, H. Suzuki, H. Nakazawa, K. Yokozeki, and H. Kumagai. 2005. Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR. J. Biotechnol. 115: 303-306. https://doi.org/10.1016/j.jbiotec.2004.08.016
  14. Liu, X., Z. Zhang, G. Cheng, and S. Dong. 2003. Spectroelectrochemical and voltammetric studies of L-DOPA. Electroanal. Chem. 15: 103-107. https://doi.org/10.1002/elan.200390009
  15. Min, K., D. H. Park, and Y. J. Yoo. 2010. Electroenzymatic synthesis of L-DOPA. J. Biotechnol. 146: 40-44. https://doi.org/10.1016/j.jbiotec.2010.01.002
  16. Park, H. S., J. Y. Lee, and H. S. Kim. 1998. Production of LDOPA (3,4-dihydroxyphenyl-L-alanine) from benzene by using a hybrid pathway. Biotechnol. Bioeng. 58: 339-343. https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<339::AID-BIT36>3.0.CO;2-4
  17. Pialis, P., M. C. Jimenez Hamann, and B. A. Saville. 1996. LDOPA production from tyrosinase immobilized on nylon 6,6. Biotechnol. Bioeng. 51: 141-147. https://doi.org/10.1002/(SICI)1097-0290(19960720)51:2<141::AID-BIT2>3.0.CO;2-J
  18. Raoof, J. B., R. Ojani, and Z. Mohammadpour. 2010. Electrocatalytic oxidation and voltammetric determination of hydrazine by 1,1-ferrocenedicarboxylic acid at glassy carbon electrode. Int. J. Electrochem. Sci. 5: 177-188.
  19. Ros, J. R., J. N. R. Lopez, and G. G. Canovas. 1993. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem. J. 295: 309-312.
  20. Sayyed, I. A. and A. Sudalai. 2004. Asymmetric synthesis of $_L$-DOPA and (R)-selegiline via $OsO_4$-catalyzed asymmetric dihydroxylation. Tetrahedron Asymmetry 15: 3111-3116. https://doi.org/10.1016/j.tetasy.2004.08.007
  21. Seetharam, G. and B. A. Saville. 2002. DOPA production from tyrosinase immobilized on zeolite. Enzyme Microb. Technol. 31: 747-753. https://doi.org/10.1016/S0141-0229(02)00182-5
  22. Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare. 2009. L-DOPA synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Catal. B 58: 187-193. https://doi.org/10.1016/j.molcatb.2008.12.014

Cited by

  1. Overview on the biotechnological production of l-DOPA vol.99, pp.2, 2012, https://doi.org/10.1007/s00253-014-6215-4
  2. L-DOPA Synthesis Using Tyrosinase-immobilized on Electrode Surfaces vol.54, pp.6, 2012, https://doi.org/10.9713/kcer.2016.54.6.817
  3. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase vol.11, pp.10, 2012, https://doi.org/10.1371/journal.pone.0164213
  4. Electrochemical Screening and Evaluation of Lamiaceae Plant Species from South Africa with Potential Tyrosinase Activity vol.19, pp.5, 2012, https://doi.org/10.3390/s19051035
  5. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis vol.120, pp.23, 2012, https://doi.org/10.1021/acs.chemrev.0c00472