DOI QR코드

DOI QR Code

Thermal Properties of the Themoplastic Elastomers Based on EPDM Ionomer/Polyamide-6 Blends

EPDM 이오노머/Polyamide-6 블렌드계 열가소성 탄성체의 열적 성질

  • Jin, Sung-Hoon (Division of Chemical Engineering, Chonbuk National University) ;
  • Song, Gwang Seok (Division of Chemical Engineering, Chonbuk National University) ;
  • Lee, Dai-Soo (Division of Chemical Engineering, Chonbuk National University)
  • 진성훈 (전북대학교 공과대학 화학공학부) ;
  • 송광석 (전북대학교 공과대학 화학공학부) ;
  • 이대수 (전북대학교 공과대학 화학공학부)
  • Received : 2011.05.11
  • Accepted : 2011.08.01
  • Published : 2012.02.01

Abstract

A new type of thermoplastic elastomer (TPE) based on EPDM ionomer as an elastomer and polyamide-6 as a reinforcing crystalline polymer was prepared and the thermal properties of TPEs were investigated. Especially effects of neutralization of maleated EPDM (MA-EPDM) to prepare EPDM ionomer with zinc oxide and the content of polyamide-6 on the thermal properties of the blends were investigated. Both the neutralization and blending were carried out employing a twin screw extruder. It was found that the neutralization of MA-EPDM results in the increase of cooling crystallization temperatures. Polyamide-6 plays the role of reinforcing filler in the blends due to the high crystallinity. Fine dispesion of polyamide-6 in the blends was confirmed and attributed to the imide formation between the maleic anhydride of MA-EPDM and amine group of polyamide-6. TPEs based on EPDM ionomer/Polyamide-6 blends showed balanced mechanical properties with improvement in heat resistance.

탄성체로써 EPDM 이오노머와 결정성 보강 고분자로써 폴리아미드-6를 이용하는 새로운 형태의 열가소성 탄성체를 제조하여 이들의 열적 성질을 고찰하였다. 특히 산화아연을 이용하여 말레인화 EPDM으로부터 EPDM 이오노머를 제조할 때 중화도의 영향과 블렌드 중 폴리아미드-6 함량의 영향을 살펴보았다. 중화와 블렌드 공정은 이축압출기를 이용하였다. 말레인화 EPDM의 중화는 냉각 결정화 온도를 상승시켰다. 폴리아미드-6의 높은 결정성은 보강재 효과를 보였다. 블렌드에서 말레인화 EPDM과 폴리아미드-6 사이의 이미드 형성으로 폴리아미드-6의 분산이 양호하게 나타났다. EPDM 이오노머와 폴리아미드-6로 제조한 열가소성 탄성체는 균형적인 기계적 물성과 향상된 내열성을 나타내었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Kresge, E. N., "Polyolefin Thermoplastic Elastomer Blends," Rubber Chem. Tech., 64(3), 469-479(1991). https://doi.org/10.5254/1.3538564
  2. Fischer, W. K., "Dynamically Partially Cured Thermoplastic Blend of Monoolefin Copolymer Rubber and Polyolefin Plastic," U. S. Patent No. 3,806,558(1974).
  3. Oderkerk, J. and Groeninckx, G., "Morphology Development by Reactive Compatibilisation and Dynamic Vulcanisation of nylon6/ EPDM Blends with a High Rubber Fraction," Polymer, 43(8), 2219-2228(2002). https://doi.org/10.1016/S0032-3861(01)00816-3
  4. Oderkerk, J. and Groeninckx, G., "Investigation of the Deformation and Recovery Behavior of nylon-6/rubber Thermoplastic Vulcanizates on the Molecular Level by Infrared-strain Recovery Measurements," Macromolecules, 35(10), 3946-3954(2002). https://doi.org/10.1021/ma010651v
  5. Oderkerk, J., de Schaetzen, G., Goderis, B., Hellemans, L. and Groeninckx, G., "Micromechanical Deformation and Recovery Processes of nylon-6 Rubber Thermoplastic Vulcanizates as Studied by Atomic Force Microscopy and Transmission Electron Microscopy," Macromolecules, 35(17), 6623-6629(2002). https://doi.org/10.1021/ma0113475
  6. Eisenberg, A. and Navratil, M., "Ion Clustering and Viscoelastic Relaxation in Styrene-based Ionomers. II. Effect of Ion Concentration," Macromolecules, 6(4), 604-612(1973). https://doi.org/10.1021/ma60034a027
  7. Venkateshwaren, L. N., Tant, M. R., Wilkes, G. L., Charlier, P. and Jerome, R., "Structure Property Comparison of Sulfonated and Carboxylated Telechelic Ionomers Based on Polyisoprene," Macromoecules. 25(15), 3996-4001(1992). https://doi.org/10.1021/ma00041a023
  8. Kim, J. S., Jackman, R. J. and Eisenberg, A., "Filler and Percolation Behavior of Ionic Aggregates in Styrene Sodium Methacrylate Ionomers," Macromolecules, 27(10), 2789-2803(1994). https://doi.org/10.1021/ma00088a021
  9. Matsuura, H. and Eisenberg, A., "Glass Transitions of Ethyl Acrylate- based Ionomers," J. Polym. Sci.: Polym. Phys. Edi., 14(7), 1201-1209(1976). https://doi.org/10.1002/pol.1976.180140705
  10. De, S. K. and Kortos, E. G., "Ionic Thermoplastic Elastomer Based on Maleated Epdm Rubber. I. Effect of Zinc Stearate," J. Appl. Polym. Sci., 61(1), 177-186(1996). https://doi.org/10.1002/(SICI)1097-4628(19960705)61:1<177::AID-APP19>3.0.CO;2-4
  11. Moad, G., "The Synthesis of Polyolefin Graft Copolymers by Reactive Extrusion," Prog. Polym. Sci., 24(1), 81-142(1999). https://doi.org/10.1016/S0079-6700(98)00017-3
  12. Antony, P. and De, S. K., "The Effect of Zinc Stearate on Meltprocessable Ionomeric Blends Based on Zinc Salts of Maleated High-density Polyethylene and Maleated EPDM Rubber," Polymer, 40(1), 1487-1493(1999). https://doi.org/10.1016/S0032-3861(98)00362-0
  13. Antony, P. and De, S. K., "Ionomeric Polyblends of Zinc Salts of Maleated EPDM Rubber and Poly(ethylene-co-acrylic acid). II. Effect of Blend Ratio," J. Appl. Polym. Sci., 71(8), 1247-1256(1999). https://doi.org/10.1002/(SICI)1097-4628(19990222)71:8<1247::AID-APP5>3.0.CO;2-W
  14. Epstein, B. N., "Tough Thermoplastic Nylon Compositions," U.S. Patent No., 4,174,358(1979).

Cited by

  1. Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.282
  2. EPDM에 방향족 카르복시산을 함유하는 아크릴 단량체의 그라프트 공중합과 기계적 특성 vol.47, pp.3, 2012, https://doi.org/10.7473/ec.2012.47.3.216