DOI QR코드

DOI QR Code

Particle Characteristics of Flame-Synthesized γ-Al2O3 Nanoparticles

화염법으로 제조된 감마-Al2O3 나노입자의 화염조건에 따른 입자특성 연구

  • Lee, Gyo-Woo (Div. of Mechanical Design Engineering, Chonbuk Nat‘l Univ., Research Center for Eco-friendly Machine Components)
  • 이교우 (전북대학교 기계설계공학부, 친환경기계부품설계연구센터)
  • Received : 2011.12.13
  • Accepted : 2012.01.25
  • Published : 2012.05.01

Abstract

In this study, ${\gamma}-Al_2O_3$ nanoparticles were synthesized by using coflow hydrogen diffusion flames. The synthesis conditions were varied with using several oxygen concentrations in the oxidizing air. The particle characteristics of the flame-synthesized $Al_2O_3$ nanoparticles were determined by examining the crystalline structure, shape, and specific surface area of the nanoparticles. The measured maximum centerline temperature of the flames ranged from 1507.8 K to 1998.7 K. The morphology and crystal structure of the $Al_2O_3$ nanoparticles were determined from SEM images and XRD analyses, respectively. The particle sizes were calculated from measured BET specific surface areas and ranged from 25 nm to 52 nm. From XRD analyses, it was inferred that a large number of the synthesized nanoparticles were ${\gamma}-Al_2O_3$ nanoparticles including ${\theta}-Al_2O_3$ nanoparticles.

본 논문은 수소를 연료로 하는 확산화염을 이용하여 알루미나 나노입자를 합성할 때, 합성되는 알루미나 나노입자의 특성에 미치는 화염온도의 영향을 조사하였다. 합성된 나노입자의 특성을 전자현미경 이미지, 결정구조 분석, 비표면적과 기공의 크기 분석, 화염온도 측정 등의 여러 특성분석 방법으로 조사하였다. 사용된 화염의 중심축 최고온도는 산화제의 산소농도가 19, 21, 30, 47%인 각각의 실험조건에서 1507.8K, 1593.8K, 1753.1K, 1998.7K으로 측정되었다. SEM 이미지 분석 및 BET 비표면적 측정을 통해서는 47% 산소농도인 경우에는 50 nm 수준의 독립적인 구형입자가 생성되었음을 확인할 수 있었으며, 19%와 21%의 경우에는 응집된 상태의 20-30 nm 수준의 입자를 볼 수 있었다. XRD 결과에서는 감마(${\gamma}$)-알루미나가 주를 이루는 것으로 판단되었다. 이상의 결과를 바탕으로 촉매 담체로 사용하기 위한 알루미나 나노입자를 연소합성 하기 위한 가장 적절한 조건으로 실험했던 네 경우 중에서는 산화제의 산소농도가 21%인 두 번째 경우를 선택할 수 있었다.

Keywords

References

  1. Park, K. Y. and Jung, K. Y., 2009, "Synthesis of Nano-Structured Alumina Powders Thru the Aerosol Process," Ceramist, Vol. 12, No. 2, pp. 27-37.
  2. Mirjalili, F., Abdullah, L. C., Mohamad, H., Fakhru'l-Razi, A., Radiah, A. B. D. and Aghababazadeh, R., 2011, "Process for Producing Nano-Alpha-Alumina Powder," ISRN Nanotechnology, Vol. 2011, Article ID 692594, pp. 1-5.
  3. Jiang, L., Yubai, P., Changshu, X., Qiming, G. and Jingkun, J., 2005, "Low Temperature Synthesis of Ultrafine ${\alpha}-Al_2O_3$ Powder by a Simple Aqueous sol-gel Process," Ceramics International, Vol. 32, No. 5, pp. 587-591. https://doi.org/10.1016/j.ceramint.2005.04.015
  4. Ming, G. M., Ying, J. Z. and Zi, L. X., 2007, "A New Route to Synthesis of γ-Alumina Nanorods," Materials Letters, Vol. 61, No. 8-9, pp. 1812-1815. https://doi.org/10.1016/j.matlet.2006.07.138
  5. Hwang, U.-Y., Lee, S.-W., Lee, J.-W., Park, H.-S., Koo, K.-K., Yoo, S.-J., Yoon, H.-S. and Kim, Y.-R., 2001, "Synthesis of Porous Particles by sol-gel Method," Journal of the Korean Institute of Chemical Engineers, Vol. 39, No. 2, pp. 206-212.
  6. Lee, J.-W., Yoon, H.-S., Chae, U.-S., Park, H.-J., Hwang, U.-Y., Park, H.-S., Park, D.-R. and Yoo, S.-J., 2005, "A Comparison of Structural Characterization of Composite Alumina Powder Prepared by sol-gel Method According to the Promoters," Korean Chem. Eng. Res., Vol. 43, No. 4, pp. 503-510. https://doi.org/10.1140/epjb/e2005-00083-9
  7. Youn, H.-J., Jang, J. W., Kim, I.-T. and Hong, K. S., 1999, "Low-Temperature Formation of α-Alumina by Doping of an Alumina-sol," Journal of Colloid and Interface Science, Vol. 211, pp. 110-113. https://doi.org/10.1006/jcis.1998.5977
  8. Park, Y. K., Tadd, E. H., Zubris, M. and Tannenbaum R., 2005, "Size-Controlled Synthesis of Alumina Nanoparticles from Aluminum Alkoxides," Materials Research Bulletin, Vol. 40, pp. 1506-1512. https://doi.org/10.1016/j.materresbull.2005.04.031
  9. Rozita, Y., Brydson, R. and Scott, A. J., 2009, "An Investigation of Commercial $Gamma-Al_2O_3$ Nanoparticles," Journal of Physics: Conference Series Vol. 241, Article ID 012096.
  10. Johannessen, T., Pratsinis, S. E. and Livbjerg, H., 2000, "Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles," Chemical Engineering Science, Vol. 55, pp. 177-191. https://doi.org/10.1016/S0009-2509(99)00183-9
  11. Kelekanjeri, V. S. K. G., Carter, W. B. and Hampikian, J. M., 2006, "Deposition of ${\alpha}-Alumina$ via Combustion Chemical Vapor Deposition," Thin Solid Films, Vol. 515, pp. 1905-1911. https://doi.org/10.1016/j.tsf.2006.07.033
  12. Lee, G. W., Chung, Y.-R. and Jurng, J., 1999, "Temperature Measurement in Concentric Diffusion Flames by Rapid Insertion Technique," Journal of the Korean Society of Combustion, Vol. 4, No. 2, pp. 75-83.
  13. Verwey, E. J. W., 1977, "The Structure of the Electrolytical Oxide Layer on Aluminum," Zeitschrift fuer Kristallographie, Kristallogeometrie, Kristallphysik, Kristallchemie, Vol. 91, pp. 317-320.
  14. Dondi, M., Matteucci, F., Baldi, G., Barzanti, A., Cruciani, G., Zama, I. and Bianchi, C. L., 2008, "Gray-Blue (Al2O3)-(MoOx) Ceramic Pigments: Crystal Structure, Colouring Mechanism and Performance," Dyes Pigments, Vol. 76, pp. 179-186. https://doi.org/10.1016/j.dyepig.2006.08.021