• Title/Summary/Keyword: Young's Modulus

Search Result 918, Processing Time 0.031 seconds

Measuring Young's Modulus of Materials by Using Accelerometer (가속도계를 이용한 재료의 영계수 측정방법)

  • Sohn, Chang-Ho;Park, Jin-Ho;Yoon, Doo-Byung;Chong, Ui-Pil;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1158-1164
    • /
    • 2006
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

Measuring Young's Modulus of Materials by using Accelerometer (가속도계를 이용한 재료의 영계수 측정방법)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Sohn, Chang-Ho;Hwang, Il-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1027-1032
    • /
    • 2007
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

  • PDF

Stability of a slender beam-column with locally varying Young's modulus

  • Kutis, Vladimir;Murin, Justin
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.15-27
    • /
    • 2006
  • A locally varying temperature field or a mixture of two or more different materials can cause local variation of elasticity properties of a beam. In this paper, a new Euler-Bernoulli beam element with varying Young's modulus along its longitudinal axis is presented. The influence of axial forces according to the linearized 2nd order beam theory is considered, as well. The stiffness matrix of this element contains the transfer constants which depend on Young's modulus variation and on axial forces. Occurrence of the polynomial variation of Young's modulus has been assumed. Such approach can be also used for smooth local variation of Young's modulus. The critical loads of the straight slender columns were studied using the new beam element. The influence of position of the local Young's modulus variation and its type (such as linear, quadratic, etc.) on the critical load value and rate of convergence was investigated. The obtained results based on the new beam element were compared with ANSYS solutions, where the number of elements gradually increased. Our results show significant influence of the locally varying Young's modulus on the critical load value and the convergence rate.

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Sensitivity Analysis in the Estimation of Complex Elastic Modulus of Viscoelastic Materials by Transmissibility Measurements (전달율 측정에 의한 점탄성재료의 복소탄성계수 추출시의 민감도 분석)

  • 안태길;허진욱;김광준
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.99-106
    • /
    • 1992
  • The complex Young's modulus of a viscoelastic material can be obtained as a function of frequency from the measurements of relative motion between the two ends of a bar-type specimen. Non-resonance method is usually used to obtain the complex Young's modulus over wide range of frequency including resonance points, while in resonance method information at resonance frequencies only is used. However, the complex Young's modulus obtained by the non-resonance method is often unreliable in the anti-resonance frequency regions because of the measurement noise problems. In this study, the effects of the random measurement errors on estimating the complex Young's modulus are studied in the aspect of sensitivity, and how to obtain the reliable frequency region for a given measurement error level is shown. The usable frequency regions in determining the complex Young's modulus are represented by a non-dimensional parameter formed with the wave length and specimen length.

  • PDF

Study on the Elastic Characteristics of Living Cells using Atomic Force Microscope Indentation Technique

  • Kwon Eun-Young;Kim Young-Tae;Kim Dae-Eun
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.10-13
    • /
    • 2006
  • In this work, imaging and study of elastic property of the living cell was performed. The motivation of this work was to seek the possibility of exploiting Young's modulus as a disease indicator using Atomic Force Microscope (AFM) and also to gain fundamental understanding of cell mechanics for applications in medical nanorobots of the future. L-929 fibroblast adherent cell was used as the sample. Imaging condition in cell culturing media environment was done in very low speed ($20{\mu}m/ s$) compared to that in the ambient environment. For measuring the Young's modulus of the living cell, AFM indentation method was used. From the force-distance curve obtained from the indentation experiment the Young's modulus could be derived using the Hertz model. The Young's modulus of living L-929 fibroblast cell was $1.29{\pm}0.2$ kPa.

The Syudy of Young's Modulus in Trabecular Bone with Bone Cement Injection (골강화제가 주입된 망상골의 영률에 관한 연구)

  • Moon, H.W.;Lee, M.K.;Park, J.Y.;Chae, S.W.;Lee, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1368-1372
    • /
    • 2003
  • PMMA which is used as the bone cement for vertebroplasty is able to be a supporter, as a fixing supporter role, for broken trabecular structure, caused by the compressed fracture of spine on aged osteoporosis. In this thesis, as experimenting apparent density of bone pieces, we have figured out support extent of Young's modulus as classifying the bone pieces injected PMMA and the others which are not. In case of low apparent density of PMMA in some bone, Young's modulus seems to be more supportable to bone. On the other hand, if apparent density of bones is normal, injection of PMMA is not very effective on improvement in Young's modulus of bone cement injection.

  • PDF

A Study on Prediction of Young's Modulus of Composite with Aspect Ratio Distribution of Short Fiber (장단비 분포를 갖는 단섬유 복합재의 영계수 예측에 대한 연구)

  • Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.99-104
    • /
    • 2006
  • Young's modulus of composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory, where short fibers of aspect ratio distribution are assumed to be aligned. Young's modulus of the composite is predicted with the smallest class interval for simulating the actual distribution of fiber aspect ratio, which is compared with that computed using different class intervals. Young's modulus of the composite predicted with mean aspect ratio or the largest class interval is overestimated by the maximum 10%. As the class interval of short fibers for predicting Young's modulus decreases, the predicted results show good agreements with those obtained using the actual distribution of fiber aspect ratio. It can be finally concluded from the study that if and only if the class interval of short fiber normalized by the maximum aspect ratio is smaller than 0.1, the predicted results are consistent with those obtained using the actual distribution of aspect ratio.

  • PDF

AN IN-SITU YOUNG'S MODULUS MEASUREMENT TECHNIQUE FOR NUCLEAR POWER PLANTS USING TIME-FREQUENCY ANALYSIS

  • Choi, Young-Chul;Yoon, Doo-Byung;Park, Jin-Ho;Kwon, Hyun-Sang
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2009
  • Elastic wave is one of the most useful tools for non-destructive tests in nuclear power plants. Since the elastic properties are indispensable for analyzing the behaviors of elastic waves, they should be predetermined within an acceptable accuracy. Nuclear power plants are exposed to harsh environmental conditions and hence the structures are degraded. It means that the Young's modulus becomes unreliable and in-situ measurement of Young's modulus is required from an engineering point of view. Young's modulus is estimated from the group velocity of propagating waves. Because the flexural wave of a plate is inherently dispersive, the group velocity is not clearly evaluated in temporal signal analysis. In order to overcome such ambiguity in estimation of group velocity, Wigner-Ville distribution as the time-frequency analysis technique was proposed and utilized. To verify the proposed method, experiments for steel and acryl plates were performed with accelerometers. The results show good estimation of the Young's modulus of two plates.