DOI QR코드

DOI QR Code

Occurrence of REE-bearing Allanite with Th-mineral (thorite) in Wolhoengri, Hadong, Korea

하동군 월횡리에서 토륨광물과 수반된 함REE 갈렴석의 산출상태

  • Choi, Jin Beom (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Kwak, Ji Young (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 최진범 (경상대학교 지구환경과학과, 경상대학교 기초과학연구소) ;
  • 곽지영 (경상대학교 지구환경과학과, 경상대학교 기초과학연구소)
  • Received : 2012.12.16
  • Accepted : 2012.12.27
  • Published : 2012.12.31

Abstract

Ilmenite mine was developed in the anorthosites which intruded Precambrian Jirisan gneiss complex in Wolheongri, Okjong-myeon, Hadong. Ti-ore bodies are confined to the intercumulated type anorthosites, where REE-bearing allanite occurred as veins. The chemistry of allanites shows relatively low in CaO (11.02~12.81 wt%), but high in ${\Sigma}R_2O_3$ (R = Ce, La, Nd) (17.21~21.58 wt%), respectively. Abnormally high radioactive detection ascribes to the presence of small particles of thorium mineral known as thorite ($ThSiO_4$). Thorite shows 65~72.78 wt% ($ThO_2$) and 5.49~12.78 wt% ($UO_2$) in composition. The radioactive prospecting could be a strong tool to find REE-bearing allanite which is closely associated with Ti-ore deposits.

하동군 옥종면 월횡리에는 과거 개발하던 티탄철석 광산이 위치하며, 주변 지질은 선캄브리아기 지리산 편마암 복합체가 광범위하게 분포하고 이를 회장암이 관입하고 있다. 간극누적형 회장암체 내 티탄철 광체가 발달하고 있으며, Ti-광체 내 희토류원소를 포함하는 갈렴석이 맥상으로 발달하고 있다. 갈렴석의 CaO 함량은 11.02~12.81 wt%로 낮은 반면, ${\Sigma}R_2O_3$는 상대적으로 높은 17.21~21.58 wt% (R=Ce, La, Nd)의 범위를 보여준다. 갈렴석이 높은 방사능 이상치를 보여주는 이유는 갈렴석 내에 미립의 광물상으로 존재하는 토륨 광물인 톨라이트(thorite, $ThSiO_4$) 때문인 것으로 밝혀졌다. 톨라이트는 $3{\sim}6{\mu}m$ 크기의 입상으로 누대구조를 보여주며, 화학분석 결과 $ThO_2$는 65~72.78 wt%, $UO_2$는 5.49~12.78 wt%의 함량을 보였다. 이러한 광물학적 특성은 톨라이트를 함 REE 갈렴석을 찾는 방사능 탐사를 함에 있어 좋은 지시자로 이용할 수 있을 것으로 사료된다.

Keywords

References

  1. Campbell, F.A. and Ethier, V.G. (1984) Composition of allanite in the footwall of the Sullivan orebody, British Columbia. Canadian Mineralogist, 22, 507- 511.
  2. Chi, S., Koh, S.M., Ko, I.S., Kim, D.U., Kim, S.Y., Kim, Y.U., Kim, Y.D., Kim, I.J., Ryoo, C.R., Park, S.J., Seo, J.R., Yoo, J.H., Lee. M.J., Lee. J.H., Lee, H.Y., and Heo, C.H. (2008) Reevaluation of strategy mineral resources and development of exploration techniques for ore deposits. KIGAM, GP2007-017-2008(2), 403p.
  3. Cox, R.A., Wilton, D.H.C., and Košler, J. (2003) Laser-ablation U-Th-Pb in situ dating of zircon and allanite: an example from the October harbour granite, central coastal Labrador, Canada. Canadian Mineralogist, 41, 273-291. https://doi.org/10.2113/gscanmin.41.2.273
  4. Dollase, W.A. (1971) Refinement of the crystal structures of epidote, allanite, and hancockite. American Mineralogist., 56, 447-464.
  5. Erict, T.S. (2002) The Mess that is "allanite". Canadian Mineralogist, 40, 1411-1419. https://doi.org/10.2113/gscanmin.40.5.1411
  6. Exley, R.A. (1980) Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems. Earth and Planetary Science Letters, 48, 97-110. https://doi.org/10.1016/0012-821X(80)90173-9
  7. Finger, F., Broska, I., Roberts, M.P., and Schermaier, A. (1998) Replacement of primary monazite by apatite- allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American. Mineralogist., 83, 248-258. https://doi.org/10.2138/am-1998-3-408
  8. Franz, G., Thomas, S., and Smith, D.C. (1986) Highpressure phengite decomposition in the Weissenstein eclogite, Munchberger Gneiss Massif, Germany. Contribution to Mineralogy and Petrology, 92, 71-85. https://doi.org/10.1007/BF00373964
  9. Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana's New Mineralogy (8th ed.). 1195-1205, John Wiley & Sons, New York.
  10. Gieré, R. (1996) Formation of rare earth minerals in hydrothermal systems. In: Jones, A.P., Wall, F., Williams, C.T. (eds.). Rare Earth Minerals; Chemistry, Origin and Ore Deposits. Mineral. Soc. Series, 105-150, Chapman & Hall.
  11. Gieré, R. and Sorensen, S.S. (2004) Allanite and other REE-rich epidote-group minerals. In Epidotes (A. Liebsher & G. Franz, eds.). Review in Mineralogy and Geochemistry, 56, 431-493. https://doi.org/10.2138/gsrmg.56.1.431
  12. Gromet, L.P. and Silver, L.T. (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochimica et Cosmochimica Acta, 47, 925-940. https://doi.org/10.1016/0016-7037(83)90158-8
  13. Hermann, J. (2002) Experimental constrains on phase relations in subducted continental crust. Contributon to Mineralogy and Petrology, 143, 219-235. https://doi.org/10.1007/s00410-001-0336-3
  14. Hoshino, M., Kimata, M., Shimizu, M., Nishida, N., and Fujiwara, T. (2006) Allanite-(Ce) in granitic rocks from Japan: genetic implications of patterns of REE and Mn enrichment. Canadian Mineralogist, 44, 45-62. https://doi.org/10.2113/gscanmin.44.1.45
  15. Hoshino, M., Kimata, M., Arakawa, Y., Shimizu, M., Nishida, N., and Nakai, S. (2007) Allanite-(Ce) as an indicator of the origin of granitic rocks in Japan: importance of Sr-Nd isotopic and chemical composition. Canadian Mineralogist, 45, 1329-1336. https://doi.org/10.3749/canmin.45.6.1329
  16. Jeong, J.G. (1980) Petrogenesis of anorthosite and related rocks in Hadong-Sancheong district, Korea. Ph.D. thesis, Seoul National University.
  17. Jeong, J.G. (1987) Magmatic differentiation of the anorthositic rocks in Hadong-Sancheong area. Journal of the Geological Society of Korea, 23, 216-228.
  18. Jeong, J.G. and Lee, S.M. (1986) Regional metamorphism of anorthositic rocks in Hadong-Sancheong area. Memor. for Prof. Sang Man Lee's 60th, 87-106.
  19. Jeong, J.G., Kim, W.S., and Watkinson, D.H. (1989) Geologic structure of Hadong anorthositic rocks and associated titanium orebody. Journal of the Geologica Society of Korea, 25, 98-111.
  20. Jung, J.S., Kim, J.S., Cho, H., Song, C.W., Son, M., Ryoo, C.R., Chi, S., and Kim, I.S. (2010) Occurrence and deformation of Fe-Ti ores from the Proterozoic Hadong anorthosites, Korea. Journal of the Petrological Society of Korea, 19, 31-49.
  21. Kim, S.Y. and Seo, J.R. (1990) Study on geology and ore deposits for rare metals in Korea. KIER, KR- 90-2D-1, 82p.
  22. Kim, S.Y., Seo, J.R., Yang, J.I., and Kim, S.B. (1991a) Geology and ore deposits of rare elements in Hadong and Uljin Area, Korea. KIER, KR-91-2D-1, 78p.
  23. Kim, Y.J., Lee, C.S., and Kang S.W. (1991b) Petrochemistry on intermediated-base plutons in Jirisan area of the Ryongnam Massif. Journal of Korean Earth Science Society, 12, 100-122.
  24. Kim, W.S., Jeong, J.G., Lee, K.H., and Watkinson, D.H. (1992) Rare metal occurrences within the anorthosite in the Hadong-Sanchong area, Kyungnam Province, Korea. Journal of the Mineralogical Society of Korea, 5, 14-21.
  25. Koh, S.M. (2010) Occurrence of ilmenite deposits in Hadong-Sancheong Area. Journal of the Mineralogical Society of Korea, 23, 25-37.
  26. Koh, S.M., Yu, J.H., Kim, Y.U., Lee, H.Y., and Song. M.S. (2003) Evaluation and exploration of titanium and feldspar deposits in Hadong-Sancheong-Hapcheon Area. KIGAM, KR-03(C)-16, 70p.
  27. Lee, J.M., Jeong, J.G., and Kim, W.S. (1999) The preliminary study on the evolution of Hadong anorthositic rocks and their genetic relations with ilmenite- bearing ore bodies, Korea. Jorunal of the Geological Society of Korea, 35, 321-336.
  28. Lee, S.M. (1980) Metamorphic facies analysis for the representatives of meta-morphic belts. CGMW Bull., 25, 21-27.
  29. Lee, S.M., Na, K.C., Lee, S.H., Park, B.Y., and Lee, S.W. (1981) Regional metamorphism of the metamorphic rock complex in the southeastern region of the Sobaeksan massif. Journal of the Geological Society of Korea, 17, 169-188.
  30. Moon, J.J., Moon S.W., and Jaw, Y.J. (2012) SHRIMP zircon ages of the dioritic rocks from the Hadong area in the southeastern Yeongnam Massif (Abs.). Fall Conference of the Association of Korean Geoscience Societies, The Geological Society of Korea, 211.
  31. Morse, S.A. (1982) A partisan review of Proterozoic anorthosites. American Mineralogist, 67, 1087-1100.
  32. Orlandi, P. and Pasero, M. (2006) Allanite-(La) from Buca Della Vena Mine, Apuan alps, Italy, an epidote- group mineral. Canadian Mineralogist, 44, 63-68. https://doi.org/10.2113/gscanmin.44.1.63
  33. Park, K.H., Kim, D.Y., and Song, Y.S. (2001) Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship. Journal of the Petrological Society of Korea, 10, 27-35.
  34. Seo, J.R., Park, S.W., Lee, P.G., Oh, M.S., and Lee, B.J. (1992) Study of rare metal mineral resources in the Hadong area. KIER, KR-92-1C-2, 72p.
  35. Sorensen, S.S. and Grossman, J.N. (1989) Enrichment of trace-elements in garnet amphibolites from a paleo- subduction zone: Catalina Schist, Southern California. Geochimica et Cosmochimica Acta, 76, 3155-3177.
  36. Spandler, C., Hermann, J., Arculus, R., and Mavrogenes, J. (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies: implication for deep subduction- zone processes. Contribution to Mineralogy and Petrology, 146, 205-222. https://doi.org/10.1007/s00410-003-0495-5
  37. Kwon, S.T and Jeong, J.G. (1990) Preliminary Sr-Nd isotope study of the Hadong-Sanchung anorthositic rocks in Korea: Implication for their origin and for the Precambrian tectonics. Journal of the Geological Society of Korea, 26, 341-349.
  38. Tribuzio, R., Messiga, B., Vannucci, R., and Bottazzi, P. (1996) Rare earth element distribution during high-pressure-low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): implications for light REE mobility in subduction zones. Geology, 24, 711-714. https://doi.org/10.1130/0091-7613(1996)024<0711:REERDH>2.3.CO;2

Cited by

  1. Deformational Phased Structural Characteristics of the Hadong Southern Anorthosite Complex and its Surrounding Area in the Jirisan Province, Yeongnam Massif, Korea vol.22, pp.2, 2013, https://doi.org/10.7854/JPSK.2013.22.2.179
  2. Genetic Relationship and Structural Characteristics of the Fe-Ti Ore Body and the Sancheong Anorthosite, Korea vol.47, pp.6, 2014, https://doi.org/10.9719/EEG.2014.47.6.571