• Title/Summary/Keyword: 갈렴석

Search Result 11, Processing Time 0.03 seconds

Microstructure Related to the Growth of Rare-earth Mineral in the Eoraesan Area, Chungju, Korea (충주 어래산 지역에서 희토류 광물의 성장과 관련된 미구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.129-141
    • /
    • 2019
  • The Eoraesan area, Chungju, which is located in the northwestern part of Ogcheon Metamorphic Zone, Korea, mainly consists of the Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks which intruded it. The metaacidic rocks (MAR) of the Gyemyeongsan Formation show a maximum radioactive value, and the Early Jurassic biotite granite is regionally distributed in this area. In this paper is researched the microstructure related to the growth of rare-earth mineral of allanite in the MAR, and is considered the source and occurrence time of rare-earth element (REE) mineralization. The MAR is mainly composed of alkalic feldspar (mainly microcline), quartz, iron-oxidizing mineral, biotite, muscovite, plagioclase, hornblende, allanite, zircon, epidote, fluorite, apatite, garnet, (clino)zoisite etc. The radioactive elements contained in the allanite cause a dark brown hale in the surrounding biotite, and the allinte also occurs as aggregate along the regional foliation. The deflection of regional foliation and the strain shadows, which are common to the pre-tectonic porphyroblast grown before the formation of regional foliation, can't be observed around most allanites (aggregates). The grain size and orientation of ironoxidizing mineral included in the allanite aggregate are the same as those in the matrix. It is recognized the hydrothermal conversion of hornblende to biotite due to the intrusion of igneous rock, and the secondary biotite occurs and contacts with allanite, zircon, epidote etc. These microstructures indicate that the rare-earth mineral of allanite (aggregate) grew by the hydrothermal alteration due to the intrusion of igneous rock after the formation of regional foliation. It is considered that the REE mineralization is closely related to the intrusion of Early Jurassic biotite granite which is regionally distributed in this area.

Occurrence of REE-bearing Allanite with Th-mineral (thorite) in Wolhoengri, Hadong, Korea (하동군 월횡리에서 토륨광물과 수반된 함REE 갈렴석의 산출상태)

  • Choi, Jin Beom;Kwak, Ji Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • Ilmenite mine was developed in the anorthosites which intruded Precambrian Jirisan gneiss complex in Wolheongri, Okjong-myeon, Hadong. Ti-ore bodies are confined to the intercumulated type anorthosites, where REE-bearing allanite occurred as veins. The chemistry of allanites shows relatively low in CaO (11.02~12.81 wt%), but high in ${\Sigma}R_2O_3$ (R = Ce, La, Nd) (17.21~21.58 wt%), respectively. Abnormally high radioactive detection ascribes to the presence of small particles of thorium mineral known as thorite ($ThSiO_4$). Thorite shows 65~72.78 wt% ($ThO_2$) and 5.49~12.78 wt% ($UO_2$) in composition. The radioactive prospecting could be a strong tool to find REE-bearing allanite which is closely associated with Ti-ore deposits.

Rare Metal Occurrences within the Anorthosite in the Hadong-Sanchong area, Kyungnam Province, Korea (하동-산청지역 회장암에 배태된 희유금속자원에 관한 연구)

  • Kim, Won-Sa;Jeong, Ji-Gon;Lee, Gang-Ho;Watkinson, D.H.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 1992
  • Allanite crystals rich in rare-earth elements(REE) occur in soil developed on top of anorthositic rocks in the Jungsu-ri area of Okjong-myun, Hadong-run, where large Ti orebodies are embedded in the bed rock. In this study allanite is investigated mainly by transmitted light microscopy, electron microprobe analysis, atomic absoption spectrophotometry, X-ray diffraction, infrared spectrocopy. In addition, its specific gravity and micro=indentation hardness value are measured. Allanite occurs with max. dimension of $3cm{\times}6cm$ and coexists with quartz, epidote, zircon, biotite and muscovite. It shows nearly nonmetamict crystallinity, although ${\alpha}$-particles bombardment from the disintegration of the radioactive element Th is detected by an autoradiography. The allanite is particularly enriched in REE(19.88-23.99 wt.%), but is deficient in CaO(8.35-10.29wt.%). Genesis of the allanite in this area is not understood yet. It is, however, assumed to have been formed from magmatic fluid rich in REE and Ti, based on the facts that it ocexists with zircon and that it has high $TiO_2$(0.89-1.13 wt.%) whose concentration is significant in the country rocks.

  • PDF

Equilibrium Growth of Allanite and Zircon during Amphibolite-facies Metamorphism (각섬암상 변성작용 중 갈렴석과 저어콘의 평형 성장)

  • Kim, Yoonsup
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The U-Pb isotopic and rare earth element compositions of zircon were measured using a SHRIMP from a tonalitic gneiss sample DE43 in Daeijak Island, central Korea. Zircon crystals, up to ${\sim}300{\mu}m$ in diameter, rarely contain thin overgrowth rims. In contrast to Paleoproterozoic cores, the $^{206}Pb/^{238}U$ ages of $256{\pm}23Ma(1{\sigma})$, and $221{\pm}7Ma(1{\sigma})$ were yielded from two spot analyses on the overgrowth rims of zircon. The rims are geochemically characterized by low Th/U ratios (<0.01) and strongly depleted light rare earth elements. The Permian-Triassic apparent ages of zircon are consistent with the $^{208}Pb/^{232}Th$ ages dated from allanite ($227{\pm}7Ma(t{\sigma})$) in the same sample within uncertainties, indicating an equilibrium growth of allanite and zircon at ~227 Ma. On the other hand, the younger $^{208}Pb/^{232}Th$ and $^{206}Pb/^{238}U$ ages ($213{\pm}4Ma(t{\sigma})$ and $186{\pm}9Ma(t{\sigma})$, respectively) of allanite may result from Pb loss due to the infiltration of alkali fluids from Late Triassic and Jurassic granitoids nearby.

The Origin of Radioactive Elements Found in Groundwater Within the Chiaksan Gneiss Complex: Focusing on the Relationship with Minerals of the Surrounding Geology (치악산 편마암 복합체에 분포하는 지하수 내 함유된 방사성 원소의 기원: 주변 지질을 구성하는 광물과의 연관성을 중심으로)

  • Kim, Hyeong-Gyu;Lee, Sang-Woo;Kim, Soon-Oh;Jeong, Do-Hwan;Kim, Moon-Su;Kim, Hyun-Koo;Jeong, Jong Ok
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.153-168
    • /
    • 2022
  • Petrological and mineralogical analyses were conducted to identify minerals containing radioactive elements (uranium) in the Chiaksan gneiss complex and to confirm their association with the surrounding groundwater. Fourteen minerals were identified through the microscopic and electron microscopy (SEMEDS) investigation. The principal minerals included plagioclase, biotite, quartz, alkali feldspar, chlorite, and calcite. Minor minerals were sphene, allanite, apatite, zircon, thorite, titanite, pyrite, and galena. A small amount of thorite was observed in the size of ~1 mm within macrocrystalline allanite. Allanite, which includes a large amount of rare earth elements, appeared in three distinctive patterns. The results of the EPMA analyses indicated that macrocrystalline allanite had higher elemental contents of TiO2~1.70 wt.%, Ce2O3~11.86 wt.%, FeO ~13.31 wt.%, MgO ~0.90 wt.% and ThO2 ~1.06 wt.% with the lowest average content of Al2O3 17.35 ± 2.15 wt.% (n = 7), CaO 12.13 ± 1.81 wt.% (n = 7). An allanite existing at the edge of the sphenes encompassing titanites had a higher element content of Al2O3 ~24.00 wt.%, Nd2O3 ~5.10 wt.%, Sm2O3~0.66 wt.%, Dy2O3~0.86 wt.% and Y2O3~1.38 wt.% with the lowest average content of TiO2 0.35 ± 0.21 wt.% (n = 11), Ce2O3 5.25 ± 1.03 wt.% (n = 11), FeO 9.84 ± 0.26 wt.% (n = 11), MgO 0.12 ± 0.05 wt.% (n = 11), and La2O3 1.49 ± 0.29 wt.% (n = 11). Allanites in a matrix of parental rocks exhibited intermediate values between the two elemental compositions mentioned above. None of the uranium-rich minerals were observed in the migmatitic gneiss within the study area. Consequently, the origin of uranium in the groundwater was not associated with the geology of the surrounding environment, but our investigation proved the existence of abundant allanites containing significant amounts of radioactive thorium and rare earth elements.

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju (충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성)

  • You, Byoung-Woon;Lee, Gill Jae;Koh, Sang Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.643-659
    • /
    • 2012
  • The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.

The Age of the Okcheon Metamorphic Belt-How Much Do We Know? (옥천 변성대의 시기-우리는 얼마만큼 알고 있나?)

  • Kwon, Sung-Tack
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • The geologic age of the Okcheon metamorphic belt, used to be a longstanding puzzle, has been settled down to Neoproterozoic to Paleozoic with discovery of fossils and isotopic age dating of metavolcanic rocks. As isotopic ages become accumulated, there appeared a controversy over the age of peak metamorphism in the Okcheon metamorphic belt, i.e., a single late Permian-early Triassic metamorphism (CHIME allanite age and U-Pb age of metamorphic zircon), or earlier independent presence of early Permian metamorphism (U-Pb age of allanite within garnet porphyroblast). If we compare the isotopic ages that can represent metamorphism, the data for the latter have much larger error than those of the former with some overlap considering the error limits. It means that, the former, supported by two independent ages, is considered a better representation for the age of metamorphism of the Okcheon metamorphic belt. Therefore, I propose the idea of early Permian metamorphism should better be reserved until conclusive evidence appears. The late Permian-early Triassic metamorphic age suggest that the effect of continental collision influenced much of the middle part of Korean Peninsula, namely, the Imjingang belt, the Gyeonggi massif and the Okcheon belt.

Allanite Mineralization in the Mt. Eorae Area (어래산지역(御來山地域)의 갈렴석광상(褐簾石鑛床))

  • Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.151-166
    • /
    • 1989
  • A study of rare-earth mineralization in Kyemyungsan metasedimentary formation of Precambrian Ogcheon Group was carried out in the Mt. Eore Area near Choongju City based on the thorium (Th) and uranium (U) count data of geophysical airborne survey. This rare-earth mineralization was found in the magnetite-bearing banded quartizite which contains diagnostically some amounts of the metamict allanite. The brown colored allanites are distributed as aggregates of fine grains and sometimes banded structures with magnetite (inter growth) along the banding. The ore bed is displaced by the small faults and granite intrusions, and separated 5 ore blocks. The dimensions of the outcrop are 50-80 m in width, 1,500 m in length with the strike of $N70-80^{\circ}E$ and dip of $50-80^{\circ}NW$. In the field, the values of total gamma ray count of GR-101A scintillometer were able to measure more than 400 cps and maximum 1,500 cps, which data are coincided with the values of GR-310 gamma ray spectrometer and the gamma ray count of well logging data. The chemical compositions of the allanites from EPMA data are ranged from$\sum^{TR_2O_3}$ 18.57% to 26.00%, and the cerium oxides ($Ce_2O_3$) of allanite are positive relation with $La_2O_3$, MgO, FeO, MnO and negative relation with $SiO_2$, $Al_2O_3$, $Nd_2O_3$. The result of Neutron Activation Analysis (N.A.A.), Multi-Channel Analysis (M.C.A.) and wet chemistry of 25 outcrop samples for the elements of REE, Zr, U, Th shows strong anomalies. The good correlation elements with the thorium (Th) are the elements of La, Ce, LREE, $TR_2O_3$, Pr, Sm, Yb, Lu by the increasing order.

  • PDF

Geochemical Characteristics of Allanite from Rare Metal Deposits in the Chungju Area, Chungcheongbuk-Do (Province), Korea (충주지역 희유원소광상에서 산출되는 갈렴석의 지구화학적특성)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.545-559
    • /
    • 1996
  • Rare metal (Nb-Zr-REE) ore deposits are located in the Chungju area. Geotectonically, the rare metal ore deposits are situated in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits are distributed in Kyemyeongsan Formation which consist of schist and alkaline igneous rocks. Alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nd, Nd-Th group minerals. More than 15 RE and REE minerals are found in the ore deposits. Allanite, one of the Ce-La rich REE minerals belonging to the epidote group, is the most common mineral in the studied area. The allanite- bearing rocks may be devided into seven types by features of occurrence and mineral associations; zircon type (ZT), allanite-vein type (AT), feldspar type (KT), fluorite type (FT), quartz-mica type (QT), iron-oxide type (MT), and amphibole type (HT). The allanite veins (AT) and zircon rich rocks (ZT) contain the highest total REE contents. Differences in REE abundance can be interpreted in terms of varying portions of magmatic hydrothermal fluid. Petrographical and chemical data are presented for allanites which were collected from different types. The allanites show wide variations in optical properties, due in part to differences in their chemical composition (depending on the types) and to the degree of crystallinity of the individual specimens. Allanite metamicts in biotite are generally surrounded by well developed pleochroic haloes. Usually, allanite is accompanied by zircon and other REE-bearing minerals. CaO and total REE contents $({\sum}RE_2O_3)$ range from 9.29 to 18.79% and 11.66 to 26.31%, respectively. Also, SiO, (28.87~32.61%), $Al_2O_3$ (8.30~16.88%), and $Fc_2O_3$ (16.74~24.38%) contents show varying contents from type to type. The ${\sum}RE_2O_3$ of allanite has positive relationships with $Fe_2O_3$ and negative relaton with CaO, $SiO_2$, and $Al_2O_3$ Backscattered electron microscope images (BEl) of allanite shows that the its mineral composition and texture is very complex. The allanite-bearing hosts show distinct light REE enrichment with strong negative Eu anomaly except for HI. The HT has an almost flat REE distribution pattern with a small negative Eu anomaly. The chemical variation of the allanites with occurrences and mineral association can be related to condition of temperature and oxidation states in precipitation environment.

  • PDF