DOI QR코드

DOI QR Code

A Solid-State NMR Study of Coordination Transformation in Amorphous Aluminum Oxide: Implication for Crystallization of Magma Ocean

고상 NMR을 이용한 비정질 알루미나의 상전이 연구: 마그마 바다 구성 용융체의 결정화 과정의 의의

  • Ryu, Saebom (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 류새봄 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2012.12.14
  • Accepted : 2012.12.27
  • Published : 2012.12.31

Abstract

In order to have better insights into the chemical differentiation of Earth from its magma ocean phase to the current stratified structure, detailed information of crystallization kinetics of silicate melts consisting of the magma ocean is essential. The structural transitions in oxide glasses and melts upon crystallization provide improved prospects for a systematic and quantitative understanding of the crystallization processes. Here, we report the $^{27}Al$ 3QMAS NMR spectra for sol-gel synthesized $Al_2O_3$ glass with varying temperature and annealing time. The NMR spectra for the amorphous $Al_2O_3$ show well-resolved Al coordination environments, characterized with mostly $^{[4,5]}Al$ and a minor fraction of $^{[6]}Al$. The fraction of $^{[5]}Al$ in the alumina phase decreases with increasing annealing time at constant temperature. The NMR results of $Al_2O_3$ phases also imply that multiple processes (e.g., crystallization and/or changes in structural disorder within glasses) could involve upon its phase transition. The current results and method can be useful to understand crystallization kinetics of diverse natural and multi-component silicate glasses and melts. The potential result may yield atomic-level understanding of Earth's chemical evolution and differentiation from the magma ocean.

지구가 마그마 바다 상태에서 현재의 층상화된 내부 구조로 분화되는 진화과정의 체계적인 이해를 위하여 규산염 용융체와 같은 비정질 산화물의 결정화과정 메커니즘 규명이 필요하다. 이를 위하여 결정화 과정에서 수반하는 용융체의 원자구조 변화를 실험적으로 측정하여 결정화 과정을 정량적으로 정립할 수 있다. 본 연구에서는 고상 핵자기 공명 분광분석(NMR)을 이용하여 졸겔법으로 합성한 비정질 알루미나($Al_2O_3$)의 온도-가열 시간 변화에 따른 원자구조 변화로부터, 비정질-결정질 상전이 과정을 원자 단위에서 규명하였다. 비정질 $Al_2O_3$$^{27}Al$ 3QMAS NMR 실험 결과 다량의 배위수 4, 5의 알루미늄($^{[4,5]}Al$)과 소량의 배위수 6인 알루미늄($^{[6]}Al$)이 명확히 구분되어 관찰되었고, 973 K와 1,073 K에서 각각 가열시간을 증가시킬수록 배위수 5인 알루미늄($^{[5]}Al$)이 감소하였다. 본 연구에서는 $^{[5]}Al$의 분율을 결정화의 지표로 이용하여 $^{27}Al$ 3QMAS NMR 결과를 정량 분석하였다. 분석을 통해 점진적인 원자구조의 변화로 관찰되는 비정질 산화물의 상전이 과정이 결정화 혹은 비정질 내 구조적 무질서도의 변화와 같은 복합적인 단계로 구성될 수 있음을 확인하였다. 이러한 연구 결과는 다양한 자연계의 다성분계 규산염 용융체 결정화 과정 및 마그마 바다의 분화와 지구의 화학적 진화에 대한 원자 단위의 이해증진에 도움을 줄 것이다.

Keywords

References

  1. Ansell, S., Krishnan, S., Weber, J.K.R., Felten, J.J., Nordine, P.C., Beno, M.A., Price, D.L., and Saboungi, M. (1997) Structure of liquid aluminum oxide. Physical Review Letters, 78, 464-466. https://doi.org/10.1103/PhysRevLett.78.464
  2. Avrami, M. (1940) Kinetics of phase change. II. Transformation- time relations for random distribution of nuclei. Journal of Chemical Physics, 8, 212-224. https://doi.org/10.1063/1.1750631
  3. Baltisberger, J.H., Xu, Z., Stebbins, J.F., Wang, S.H. and Pines, A. (1996) Triple-quantum two-dimensional $^{27}Al$ magic-angle spinning nuclear magnetic resonance spectroscopic study of aluminosilicate and aluminate crystals and glasses. Journal of the American Chemical Society, 118, 7209-7214. https://doi.org/10.1021/ja9606586
  4. Chou, T.C., Adamson, D., Mardinly, J. and Nieh, T.G. (1991) Microstructural evolution and properties of nanocrystalline alumina made by reactive sputtering deposition. Thin Solid Films, 205, 131-139. https://doi.org/10.1016/0040-6090(91)90294-8
  5. Davis, M.J. and Ihinger, P.D. (2002) Effects of thermal history on crystal nucleation in silicate melt: Numerical simulations. Journal of Geophysical Research, 107, 2284. https://doi.org/10.1029/2001JB000392
  6. Dingwell, D.B. and Webb, S.L. (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Physics and Chemistry of Minerals, 16, 508-516.
  7. Frydman, L. and Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. Journal of the American Chemical Society, 117, 5367-5368. https://doi.org/10.1021/ja00124a023
  8. Gibson, M.A. and Delamore, G.W. (1987) Crystallization kinetics of some iron-based metallic glasses. Journal of Materials Science, 22, 4550-4557 https://doi.org/10.1007/BF01132062
  9. Hammer, J.E. (2008) Experimental studies of the kinetics and energetics of magma crystallization. In: Putirka, K.D. and Tepley, F.J. (eds.), Minerals, Inclusions and Volcanic Processes, Review in Mineralogy & Geochemistry, Vol. 69, Mineralogical Society of America, 9-59.
  10. Huggins, B.A. and Ellis, P.D. (1992) Aluminum-27 nuclear magnetic resonance study of aluminas and their surfaces. Journal of the American Chemical Society, 114, 2098-2108. https://doi.org/10.1021/ja00032a025
  11. James, P.F. (1974) Kinetics of crystal nucleation in lithium silicate glasses. Physics and Chemistry of Glasses, 15, 95-105.
  12. James, P.F. (1985) Kinetics of crystal nucleation in silicate glasses. Journal of Non-Crystalline Solids, 73, 517-540. https://doi.org/10.1016/0022-3093(85)90372-2
  13. Johnson, W.A. and Mehl, R.F. (1939) Reaction kinetics in processes of nucleation and growth. Transactions of the American Institute of Mining and Metallurgical Engineers, 135, 416-442.
  14. Kelton, K.F. and Greer, A.L. (1988) Test of classical nucleation theory in a condensed system. Physical Review B, 38, 10089-10092. https://doi.org/10.1103/PhysRevB.38.10089
  15. Kingery, W.D., Bowen, H.K., and Uhlmann, D.R. (2006) Introduction to Ceramics (2nd ed). John Wiley & Sons, New York.
  16. Kirkpatrick, R.J. (1981) Kinetics of crystallization of igneous rocks. In: Lasaga, A.C. and Kirkpatrick, R.J. (eds.), Kinetics of geochemical processes, Reviews in Mineralogy and Geochemistry, Vol 8, Mineralogical Society of America, 321-397.
  17. Kissinger, H.E. (1957) Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702-1706. https://doi.org/10.1021/ac60131a045
  18. Labrosse, S., Hernlund, J.W., and Coltice, N. (2007) A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450, 866-869. https://doi.org/10.1038/nature06355
  19. Lee, S.K. and Stebbins, J.F. (2000) The structure of aluminosilicate glasses: High-resolution O-17 and Al-27 MAS and 3QMAS. Journal of Physical Chemistry B, 104, 4091-4100. https://doi.org/10.1021/jp994273w
  20. Lee, S.K. (2005) On the structure and the extent of disorder in non-crystalline silicates at high pressure: 2 dimensional solid-state NMR study. Journal of Mineralogical Society of Korea, 18, 45-52.
  21. Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H., Meng, Y., Hu, M.Y., Chow, P., Shu, J., Li, B., Fukui, H., Lee, B.H., Kim, H.N., Yoo, C. (2008) X-ray Raman scattering study of $MgSiO_{3}$ glass at high pressure: Implication for triclustered $MgSiO_{3}$ melt in Earth's mantle. Proceedings of the National Academy of Sciences of the United States of America, 105, 7925-7929. https://doi.org/10.1073/pnas.0802667105
  22. Lee, S.K., Lee, S.B., Park, S.Y., Yi, Y.S., and Ahn, C.W. (2009) Structure of amorphous aluminum oxide. Physical Review Letters, 103, 095501. https://doi.org/10.1103/PhysRevLett.103.095501
  23. Lee, S.K., Park, S.Y., Yi, Y.S., and Moon, J. (2010) Structure and disorder in amorphous alumina thin films: Insights from high-resolution solid-state NMR. Journal of Physical Chemistry C, 114, 13890-13894. https://doi.org/10.1021/jp105306r
  24. Lee, S.K., Park, S.Y., Kim, H.I., Tschauner, O., Asimow, P., Bai, L., Xiao, Y., and Chow, P. (2012) Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution $^{27}Al$ NMR spectroscopy. Geophysical Research Letters, 39, L5306.
  25. Levitt, M.H. (2008) Spin dynamics : Basic of Nuclear Magnetic Resonance (2nd ed). John Wiley & Sons Ltd, Chichester, 92-93.
  26. Murakami, M. and Bass, J.D. (2011) Evidence of denser M$MgSiO_{3}$ glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean. Proceedings of the National Academy of Sciences of the United States of America, 108, 17286-17289. https://doi.org/10.1073/pnas.1109748108
  27. Ohtani, E. (1985) The primodial terrestrial magma ocean and its implication for stratification of the mantle. Physics of the Earth and Planetary Interiors, 38, 70-80. https://doi.org/10.1016/0031-9201(85)90123-2
  28. Parfitt, E.A. and Wilson, L. (2008) Fundamentals of Physical Volcanology, Blackwell Publishing.
  29. Ree, T. and Eyring, H. (1958) The relaxation theory of transport phenomena. In: Eirich, F.R. (ed), Rheology:Theory and Applications, 2, Academic Press, New York.
  30. Reynard, B., Okuno, M., Shimada, Y., Syono, Y. and Willaime, C. (1999) A Raman spectroscopic study of shock-wave densification of anorthite ($CaAl_{2}Si_{2}O_{8}$) glass, Physics and Chemistry of Minerals, 26, 432- 436. https://doi.org/10.1007/s002690050205
  31. Richerson, D.W. (1992) Modern Ceramic Engineering (2nd ed). Marcel Dekker Inc.
  32. Rosenflanz, A., Frey, M., Endres, B., Anderson, T., Richards, E., and Schardt, C. (2004) Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature, 430, 761-764. https://doi.org/10.1038/nature02729
  33. Ryu, S. and Lee, S.K. (2012) Crystallization Kinetics of Amorphous Alumina: Insight from Al-27 3QMAS NMR Study. in preparation.
  34. Scott, M.G. (1983) Crystallization. In: Luborsky, F.E. (ed), Amorphous Metallic Alloys, Butterworths, London, 144-168.
  35. Shelby, J.E. (1997) Introduction to glass science and technology. The Royal Society of Chemistry.
  36. Solomatov, V. (2007) Magma oceans and primordial mantle differentiation. In: Schubert, G. (ed), Treatise on Geophysics, Elsevier, Amsterdam, 91-119.
  37. Stixrude, L. and Karki, B. (2005) Structure and freezing of $MgSiO_{3}$ liquid in Earth's lower mantle. Science, 310, 297-299. https://doi.org/10.1126/science.1116952
  38. Tonks, W.B. and Melosh, H.J. (1993) Magma Ocean formation due to giant impacts. Journal of Geophysical Research, 98, 5319-5333. https://doi.org/10.1029/92JE02726
  39. Turnbull, D. and Cohen, M. (1960) Crystallization kinetics and glass formation. In: MacKenzie, J.D. (ed), Modern Aspects of the Vitreous State, Butterworth and Co., London, 38-62.
  40. Wuttig, M. and Yamada, N. (2007) Phase-change materials for rewritable data storage. Nature Materials, 6, 824-832. https://doi.org/10.1038/nmat2009
  41. Zhang, H. and Banfield, J.F. (2002) Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. Chemistry of Materials, 14, 4145-4154. https://doi.org/10.1021/cm020072k
  42. Zhang, L., de Araujo, C.C., Eckert, H. (2007) Aluminum lactate - An attractive precursor for sol-gel synthesis of alumina-based glasses. Journal of Non-Crystalline Solids, 353, 1255-1260. https://doi.org/10.1016/j.jnoncrysol.2006.10.065