Browse > Article
http://dx.doi.org/10.9727/jmsk.2012.25.4.283

A Solid-State NMR Study of Coordination Transformation in Amorphous Aluminum Oxide: Implication for Crystallization of Magma Ocean  

Ryu, Saebom (School of Earth and Environmental Sciences, Seoul National University)
Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.25, no.4, 2012 , pp. 283-293 More about this Journal
Abstract
In order to have better insights into the chemical differentiation of Earth from its magma ocean phase to the current stratified structure, detailed information of crystallization kinetics of silicate melts consisting of the magma ocean is essential. The structural transitions in oxide glasses and melts upon crystallization provide improved prospects for a systematic and quantitative understanding of the crystallization processes. Here, we report the $^{27}Al$ 3QMAS NMR spectra for sol-gel synthesized $Al_2O_3$ glass with varying temperature and annealing time. The NMR spectra for the amorphous $Al_2O_3$ show well-resolved Al coordination environments, characterized with mostly $^{[4,5]}Al$ and a minor fraction of $^{[6]}Al$. The fraction of $^{[5]}Al$ in the alumina phase decreases with increasing annealing time at constant temperature. The NMR results of $Al_2O_3$ phases also imply that multiple processes (e.g., crystallization and/or changes in structural disorder within glasses) could involve upon its phase transition. The current results and method can be useful to understand crystallization kinetics of diverse natural and multi-component silicate glasses and melts. The potential result may yield atomic-level understanding of Earth's chemical evolution and differentiation from the magma ocean.
Keywords
amorphous $Al_2O_3$; Solid-state NMR; crystallization kinetics; magma ocean;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baltisberger, J.H., Xu, Z., Stebbins, J.F., Wang, S.H. and Pines, A. (1996) Triple-quantum two-dimensional $^{27}Al$ magic-angle spinning nuclear magnetic resonance spectroscopic study of aluminosilicate and aluminate crystals and glasses. Journal of the American Chemical Society, 118, 7209-7214.   DOI   ScienceOn
2 Chou, T.C., Adamson, D., Mardinly, J. and Nieh, T.G. (1991) Microstructural evolution and properties of nanocrystalline alumina made by reactive sputtering deposition. Thin Solid Films, 205, 131-139.   DOI   ScienceOn
3 Davis, M.J. and Ihinger, P.D. (2002) Effects of thermal history on crystal nucleation in silicate melt: Numerical simulations. Journal of Geophysical Research, 107, 2284.   DOI
4 Dingwell, D.B. and Webb, S.L. (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Physics and Chemistry of Minerals, 16, 508-516.
5 Frydman, L. and Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. Journal of the American Chemical Society, 117, 5367-5368.   DOI   ScienceOn
6 Gibson, M.A. and Delamore, G.W. (1987) Crystallization kinetics of some iron-based metallic glasses. Journal of Materials Science, 22, 4550-4557   DOI
7 Hammer, J.E. (2008) Experimental studies of the kinetics and energetics of magma crystallization. In: Putirka, K.D. and Tepley, F.J. (eds.), Minerals, Inclusions and Volcanic Processes, Review in Mineralogy & Geochemistry, Vol. 69, Mineralogical Society of America, 9-59.
8 Huggins, B.A. and Ellis, P.D. (1992) Aluminum-27 nuclear magnetic resonance study of aluminas and their surfaces. Journal of the American Chemical Society, 114, 2098-2108.   DOI
9 Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H., Meng, Y., Hu, M.Y., Chow, P., Shu, J., Li, B., Fukui, H., Lee, B.H., Kim, H.N., Yoo, C. (2008) X-ray Raman scattering study of $MgSiO_{3}$ glass at high pressure: Implication for triclustered $MgSiO_{3}$ melt in Earth's mantle. Proceedings of the National Academy of Sciences of the United States of America, 105, 7925-7929.   DOI   ScienceOn
10 Lee, S.K., Lee, S.B., Park, S.Y., Yi, Y.S., and Ahn, C.W. (2009) Structure of amorphous aluminum oxide. Physical Review Letters, 103, 095501.   DOI   ScienceOn
11 Lee, S.K., Park, S.Y., Yi, Y.S., and Moon, J. (2010) Structure and disorder in amorphous alumina thin films: Insights from high-resolution solid-state NMR. Journal of Physical Chemistry C, 114, 13890-13894.   DOI   ScienceOn
12 Lee, S.K., Park, S.Y., Kim, H.I., Tschauner, O., Asimow, P., Bai, L., Xiao, Y., and Chow, P. (2012) Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution $^{27}Al$ NMR spectroscopy. Geophysical Research Letters, 39, L5306.
13 Levitt, M.H. (2008) Spin dynamics : Basic of Nuclear Magnetic Resonance (2nd ed). John Wiley & Sons Ltd, Chichester, 92-93.
14 Murakami, M. and Bass, J.D. (2011) Evidence of denser M$MgSiO_{3}$ glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean. Proceedings of the National Academy of Sciences of the United States of America, 108, 17286-17289.   DOI   ScienceOn
15 Ohtani, E. (1985) The primodial terrestrial magma ocean and its implication for stratification of the mantle. Physics of the Earth and Planetary Interiors, 38, 70-80.   DOI   ScienceOn
16 Parfitt, E.A. and Wilson, L. (2008) Fundamentals of Physical Volcanology, Blackwell Publishing.
17 Ansell, S., Krishnan, S., Weber, J.K.R., Felten, J.J., Nordine, P.C., Beno, M.A., Price, D.L., and Saboungi, M. (1997) Structure of liquid aluminum oxide. Physical Review Letters, 78, 464-466.   DOI   ScienceOn
18 Wuttig, M. and Yamada, N. (2007) Phase-change materials for rewritable data storage. Nature Materials, 6, 824-832.   DOI   ScienceOn
19 Zhang, H. and Banfield, J.F. (2002) Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. Chemistry of Materials, 14, 4145-4154.   DOI   ScienceOn
20 Zhang, L., de Araujo, C.C., Eckert, H. (2007) Aluminum lactate - An attractive precursor for sol-gel synthesis of alumina-based glasses. Journal of Non-Crystalline Solids, 353, 1255-1260.   DOI   ScienceOn
21 Avrami, M. (1940) Kinetics of phase change. II. Transformation- time relations for random distribution of nuclei. Journal of Chemical Physics, 8, 212-224.   DOI
22 Kelton, K.F. and Greer, A.L. (1988) Test of classical nucleation theory in a condensed system. Physical Review B, 38, 10089-10092.   DOI   ScienceOn
23 James, P.F. (1974) Kinetics of crystal nucleation in lithium silicate glasses. Physics and Chemistry of Glasses, 15, 95-105.
24 James, P.F. (1985) Kinetics of crystal nucleation in silicate glasses. Journal of Non-Crystalline Solids, 73, 517-540.   DOI   ScienceOn
25 Johnson, W.A. and Mehl, R.F. (1939) Reaction kinetics in processes of nucleation and growth. Transactions of the American Institute of Mining and Metallurgical Engineers, 135, 416-442.
26 Kingery, W.D., Bowen, H.K., and Uhlmann, D.R. (2006) Introduction to Ceramics (2nd ed). John Wiley & Sons, New York.
27 Kirkpatrick, R.J. (1981) Kinetics of crystallization of igneous rocks. In: Lasaga, A.C. and Kirkpatrick, R.J. (eds.), Kinetics of geochemical processes, Reviews in Mineralogy and Geochemistry, Vol 8, Mineralogical Society of America, 321-397.
28 Kissinger, H.E. (1957) Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702-1706.   DOI
29 Labrosse, S., Hernlund, J.W., and Coltice, N. (2007) A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450, 866-869.   DOI   ScienceOn
30 Lee, S.K. and Stebbins, J.F. (2000) The structure of aluminosilicate glasses: High-resolution O-17 and Al-27 MAS and 3QMAS. Journal of Physical Chemistry B, 104, 4091-4100.   DOI   ScienceOn
31 Lee, S.K. (2005) On the structure and the extent of disorder in non-crystalline silicates at high pressure: 2 dimensional solid-state NMR study. Journal of Mineralogical Society of Korea, 18, 45-52.
32 Rosenflanz, A., Frey, M., Endres, B., Anderson, T., Richards, E., and Schardt, C. (2004) Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature, 430, 761-764.   DOI   ScienceOn
33 Ree, T. and Eyring, H. (1958) The relaxation theory of transport phenomena. In: Eirich, F.R. (ed), Rheology:Theory and Applications, 2, Academic Press, New York.
34 Reynard, B., Okuno, M., Shimada, Y., Syono, Y. and Willaime, C. (1999) A Raman spectroscopic study of shock-wave densification of anorthite ($CaAl_{2}Si_{2}O_{8}$) glass, Physics and Chemistry of Minerals, 26, 432- 436.   DOI
35 Richerson, D.W. (1992) Modern Ceramic Engineering (2nd ed). Marcel Dekker Inc.
36 Ryu, S. and Lee, S.K. (2012) Crystallization Kinetics of Amorphous Alumina: Insight from Al-27 3QMAS NMR Study. in preparation.
37 Scott, M.G. (1983) Crystallization. In: Luborsky, F.E. (ed), Amorphous Metallic Alloys, Butterworths, London, 144-168.
38 Shelby, J.E. (1997) Introduction to glass science and technology. The Royal Society of Chemistry.
39 Solomatov, V. (2007) Magma oceans and primordial mantle differentiation. In: Schubert, G. (ed), Treatise on Geophysics, Elsevier, Amsterdam, 91-119.
40 Stixrude, L. and Karki, B. (2005) Structure and freezing of $MgSiO_{3}$ liquid in Earth's lower mantle. Science, 310, 297-299.   DOI   ScienceOn
41 Tonks, W.B. and Melosh, H.J. (1993) Magma Ocean formation due to giant impacts. Journal of Geophysical Research, 98, 5319-5333.   DOI   ScienceOn
42 Turnbull, D. and Cohen, M. (1960) Crystallization kinetics and glass formation. In: MacKenzie, J.D. (ed), Modern Aspects of the Vitreous State, Butterworth and Co., London, 38-62.