DOI QR코드

DOI QR Code

Effect of Turbulence on the Plankton Behavior: Mechanical Perspective of a Process for Developing Thin Layers

난류가 플랑크톤의 거동에 미치는 영향: 역학적 관점에서 본 얇은 층의 형성과정

  • Hwang, Jin Hwan (Dongguk university-seoul, department of civil and environmental engineering)
  • 황진환 (동국대학교 건설환경공학과)
  • Received : 2012.07.03
  • Accepted : 2012.11.10
  • Published : 2012.11.30

Abstract

The present work reviews some mechanism explaining how thin layer can develop in the near coastal zone. The existence of thin layer was observed by physical research methods later than classical biological approaches. The Richardson number, which is a ratio between the stratification and shear stress is crucial factor determining the occurrence of thin layer. Micro-structure turbulence seems to affect the plankton behavior, in particular the encountering rate. Encountering rate affects significantly feeding, reproduction etc. and this fact was proved by the mechanical simulation methods. Recently the Gyrotaxis was introduced to explain how thin layer occurs in the mixing layer. Such physical approaches to explain ecological problem will be prominent methods for marine ecological research area.

본 연구에서는 최근 물리적 관측 방법으로 그 존재가 확인된 얇은 층(thin layer)의 형성 메커니즘에 대하여 검토하였다. 기존의 연구들에서는 성층과 전단응력의 상대적 크기인 Richardson수가 얇은 층의 중요한 결정요인인 것으로 밝혀졌다. 성층이 없는 조건하에서의 물리적 수치 실험은 미세 난류(micro-structure turbulence)가 플랑크톤의 거동에 변화를 주어 성장과 재생산 등에 영향줄 수 있음을 설명하였다. 기존의 플랑크톤 거동에 성층과 전단응력의 효과를 고려하여 최근 Gyrotaxis의 메커니즘으로 얇은 층이 형성되는 과정을 설명하였다. 이러한 생태학적 문제에 물리학적 연구방법론의 적용이라는 최근의 연구경향은 현재 및 향후에 해양생태학에서 중요한 접근방법이라고 할 수 있다.

Keywords

References

  1. Ackerman, J.D., 1999. Effect of velocity on the filter feeding of dreissenid mussels (Dreissena polymorph and Dreissena bugensis): Implication for trophic dynamics, Can. J. Fish. Aquat. Sci. 56: 1551-1561. https://doi.org/10.1139/f99-079
  2. Alldredge, A.L., T.J. Cowles, S. MacIntyre, J.E.B. Rines, P.L. Donaghay, C.F. Greenlaw, D.V. Holliday, M.M. Dekshenieks, L.M. Sullivan and J.R. Zaneveld, 2002. Occurrence and mechansms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Marine Ecology Progress Series 233: 1-12. https://doi.org/10.3354/meps233001
  3. Churnside, J.H. and P.L. Donaghay, 2009. Thin scattering layers observed by airborne lidar, Journal of Marine System, 66: 778- 789.
  4. Cheriton, O.M., M.A. McManus, D.V. Holliday, C.F. Greenlaw, P.L. Donaghay and T.J. Cowles, 2007. Effects of Mesoscale physical processes on thin zooplankton layers at four sites along the west coast of the U.S., Estuaries and coasts 30(4): 575-590. https://doi.org/10.1007/BF02841955
  5. Criminaldi, J.P. and H.S. Browning, 2004. A proposed mechanism for turbulent enhancement of broadcast spawning efficiency, J. Mar. Sys. 49, 3-18. https://doi.org/10.1016/j.jmarsys.2003.06.005
  6. Dekshenieks, M.M., P.L. Donaghay, J.M. Sullivan, J.E.B. Rines, T.R. Osborn and M.S. Twardowski, 2001. Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes.Mar. Eco. Prog. Ser. 223: 61-71. https://doi.org/10.3354/meps223061
  7. Denman, K.L. 1984. Predictability of the marine ecosystem, In Predcitibility of Fluid Motions, G. Holloway and Bb. West, eds. American Institute of Physics, New York, pp 601-602.
  8. Donaghay P.L., H.M. Rines and J.M. Sieburth, 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch Hydrobiology 36: 97-108.
  9. Durham, W.M., J.O. Kessler and R. Stocker, 2009. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers, Science, 323: 1067-1070 https://doi.org/10.1126/science.1167334
  10. Durham, W.M., E. Climent and R. Stocker, 2011. Gyrotaxis in a steady Vortical Flow, Physical Review Letters, 106, 238102-1-238102-4. DOI: 10.1103/PhysRevLett.106.238102.
  11. Franks, P.J.S., 1995. Thin layers of phytoplankton: a model of formation by near inertial wave shear, Deep-Sea Research I, 42(1): 75-91. https://doi.org/10.1016/0967-0637(94)00028-Q
  12. Gargett, 1997. "Theories" and techniques for observing turbulence in the ocean euphotic zone, Sci. Mar., 61: 22-45.
  13. Hoecker-Martinez, M.S. and W.D. Smyth, 2012. Trapping of Gyrotactic organisms in an unstable shear layer Continental Shelf Research 36, 8-18. DOI: 10.1016/j.csr.2012.01.003.
  14. Hwang, J.H., H. Yamazaki and C.R. Rehmann, 2006. Buoyancy generated turbulence in sheared stably stratified flow. Phys. Fluids, 18, 045104. https://doi.org/10.1063/1.2193472
  15. Jumars, P.A., J.H. Trowbridge, E. Boss, and L. Karp-Boss, Turbulence- plankton interactions: A new cartoon, submitted to Marine Ecology:An Evolutionary perspective.
  16. Holliday D.V., P.L. Donaghay, G.F. Greenlaw, D.E. McGeee, M.A. McManus, J.M. Sullivan and J.L., Miksis, 2003. Advances in defining fine- and microscale patterns in plankton. Aquatic Living Resources 16: 131-136. https://doi.org/10.1016/S0990-7440(03)00023-8
  17. McManus, M.A., A.L. Alldredge, A.H. Barnard, E.Boss, J.F. Cases, T.J. Cowles, P.L.Donaghay, L.B. Eisner, D.J. Gifford, C.F.Greenlaw, C.M.Herren, D.V. Holliday, D. Johnson, S. MacIntyre, D.M. McGhee, T.R. Osborn, M.J. Perry, E. Pieper, J.E.B. Rines, D.C. Smith, J.M. Sullivan, M.K. Talbot, M.S. Twardowski, A. Weidemann and J.R. Zaneveld, 2003. Characteristics, distribution and persistence of thin layer over a 48-hour period, Marine ecology progress series, 261: 1-19. https://doi.org/10.3354/meps261001
  18. McManus, M.A., O.M. Cheriton, P.J. Drake, D.V. Holliday, C.D. Storlazzi, P.L. Donaghay and C.F. Greenlaw, 2005. Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean., Marine Ecology Progress series. 301: 199-215. https://doi.org/10.3354/meps301199
  19. Maxey, M.R. and J.J. Riley, 1983. Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26: 883-890. https://doi.org/10.1063/1.864230
  20. Metcalfe, A.M., Pedley, T.J. and Thingstad, T.F. 2004. Incorporating turbulence into a plankton foodweb model, J. Mar. Sys. 1-18.
  21. Nowell, A.R.M. and P.A. Jumars, 1984. Fluid and sediment dynamic effects on marine benthic communicty strcuture, Ann. Rev. Ecol. Syst., 15: 303-328. https://doi.org/10.1146/annurev.es.15.110184.001511
  22. Osborn, T.R. 1998. Finestructure, microstructure, and thin layers, Oceanography, 11: 36-43. https://doi.org/10.5670/oceanog.1998.13
  23. Rothschild, B.J. and T.R. Osborn, 1988. Small-scale turbulence and planktonic contact rates J. Plankton Res., 10: 465-474. https://doi.org/10.1093/plankt/10.3.465
  24. Squires, K.D. and J.K. Eaton, 1991. Preferential concentration of particles by turbulence, Phys. Fluids. 3: 1169-1178. https://doi.org/10.1063/1.858045
  25. Squires, K.D. and H. Yamazaki, 1995. Preferential concentration of marine paricles in isotropic turbulence, Deep-Sea Res. 42: 1989- 2004. https://doi.org/10.1016/0967-0637(95)00079-8
  26. Sullivan, J.M., D.V. Holliday, M. McFarland, M.A. McManus, O.M. Cheriton, K.J. Benoit-Bird, L. Goodman, Z. Wang, J.P. Ryan, M. Stacey, C. Greenlaw and M. A. Moline, 2010. Layered organism in the coastal ocean: An introduction to planktonic thin layers and the LOCO project. Continental Shelf Research 30, 1-6. DOI: 10.1016/j.csr.2009.09.001.
  27. Sullivan, J.M., P.L. Donaghay and J.E.B. Rines, 2010. Coastal thin layer dynamics: consequences to biology and optics. Continental shelf research, 30: 50-65, DOI: 10.1015/j.csr.2009.07.009.
  28. Sundermeryer, M.A., J.R. Ledwell, N.S. Oakey and J.W. Greenan, 2004. Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogra.
  29. Thomas, W.H. and C.H. Gibson, 1992. Effects of qualified smallscale turbulence on the dianoglagellate, Gymnodinium sanquineum (splendens): contrast with Gonyaulax (Linqulodinium) polyedra and the fishery implication., Deep-Sear Res. 39: 1429-1437. https://doi.org/10.1016/0198-0149(92)90078-8
  30. Torney, C. and Z. Neufeld, 2007. Transport and Aggregation of Self- Propelled Particles in Fluid Flows, Physical Review Letters, 99: 078101-1-078101-4. https://doi.org/10.1103/PhysRevLett.99.078101
  31. Yamazaki, H., 1993. Lagrangian study of planktonic organisms: perpectives. Bull. Mar. Sci. 53: 265-278.
  32. Yamazaki, H., D.L. Mackas and K.L. Denman, 2002. Coupling small-scale physical process with biology, In The Sea, A.R. Robinson, J. McCarthy, and J. Rothschid, John Wiely & Sons, Inc. New York, pp 51-112.
  33. Yamazaki, H., T.R. Osborn and K.D. Squires, 1991. Direct numerical simulation of plankton contact in turbulence flow. J. Plankt. Res. 13: 629-643. https://doi.org/10.1093/plankt/13.3.629
  34. Wang, Z. and L. Goodman, 2010. The evolution of a thin phytoplankton layer in strong turbulence, Continental Shelf Research 30: 104-118. DOI:10.1016/j.csr.2009.08.006.
  35. Yen J. and R. Strickler, 1996. Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicious?, Invertebr. Biol. 115: 191-205. https://doi.org/10.2307/3226930
  36. Yen, J., M.J. Weissburg and M.H. Doall, 1998. The fluid physics of signal perseption by mate-tracking copepods, Philos. Trans. R. Soc. London Ser. B, 353: 787-804. https://doi.org/10.1098/rstb.1998.0243
  37. Yund, P.O. and S.K. Meidel, 2003. Sea urchin spawning in benthic boundary layers: Are eggs fertilized before advecting awasy from females?, Limn. Oceanogr. 48: 795-801. https://doi.org/10.4319/lo.2003.48.2.0795
  38. Zimenez, J., 1997. Oceanic turbulence at millimeter scales, Sci. Mar. 61: 47-56.