DOI QR코드

DOI QR Code

The Impact of Sand Addition to An Intertidal Area for the Development of the Manila Clam, Ruditapes philippinarum Habitat on Benthic Community Structure - the case of an sandbank in Gonam-myeon, Taean-gun -

바지락 치패발생장 조성을 위한 모래살포가 저서동물 군집구조에 미치는 영향 - 태안군 고남면 모래톱 갯벌 사례 -

  • Yoon, Sang-Pil (Coastal Weland Research Institute, National Fisheries Research & Development Institute (NFRDI)) ;
  • Song, Jae-Hee (Coastal Weland Research Institute, National Fisheries Research & Development Institute (NFRDI)) ;
  • Kim, Youn-Jung (Marine Environment Research Division, National Fisheries Research & Development Institute (NFRDI)) ;
  • An, Kyoung-Ho (Coastal Weland Research Institute, National Fisheries Research & Development Institute (NFRDI))
  • 윤상필 (국립수산과학원 갯벌연구소) ;
  • 송재희 (국립수산과학원 갯벌연구소) ;
  • 김연정 (국립수산과학원 어장환경과) ;
  • 안경호 (국립수산과학원 갯벌연구소)
  • Received : 2012.10.04
  • Accepted : 2012.11.12
  • Published : 2012.11.30

Abstract

This study was conducted to investigate the impact of sand addition to an intertidal for the development of the Manila clam habitat on benthic community structure. For this, we focused on the spatio-temporal changes in the surface sediment condition and benthic community structure before and after the event. Study site was an sandbank in Gonam-myeon, Taean-gun where sand added to on July 2010. We set three stations at each of sand adding area (experimental plot) and non sand-adding area (control plot) and did sampling works ten times from June 2010 to October 2011. Directly after the event, surface sediments changed to very coarse sand, but the state was not maintained over four months because of seasonal sedimentation and finally got back to very fine sand in eight months. The number of species and density were temporarily reduced right after the event and crustacean species such as Apocorophium acutum, Photis sp. were most negatively affected by the event. However, the number of species recovered from the reduction in three months and density did in four months due to the recolonization by the existing species and species in the vicinity of the plot. During the study period, dominant species continuously changed from the species such as A. acutum, Photis sp. at the time before the event, through the species such as Heteromastus filiformis, Macrophthalmus japonicus at the time right after the event, to the species such as Musculista senhousia, Ruditapes philippinarum, Mediomastus californiensis in the latter part of the study period. Although surface sediment properties and ecological indices recovered within a certain period after the event, the recovery of community structure has never been observed up to the end of the study.

본 연구는 바지락 치패발생장 조성을 위한 모래살포가 저서동물군집에 미치는 영향을 파악하기 위해 수행되었으며, 모래살포 전 후 저서동물군집과 퇴적환경의 시.공간 변화에 초점을 맞춰 조사를 실시하였다. 모래살포 작업은 2010년 7월에 태안군 고남면 모래톱 갯벌에서 이루어졌으며, 현장조사는 모래살포구역(실험구)과 비살포구역(대조구)에 각각 3개 정점을 선정하고 2010년 6월부터 2011년 10월까지 총 10회에 걸쳐 진행하였다. 모래살포 후 실험구의 표층퇴적물은 극조립사로 변했으나 약 4개월 후부터 계절적인 세립화가 진행되어 약 8 개월 후 모래살포 이전과 동일한 극세립사로 되돌아갔다. 모래살포 직후 실험구 저서동물군집의 출현종수 및 개체밀도는 일시적으로 감소하였으며, 주로 Apocorophium acutum, Photis sp. 등의 갑각류에서 피해가 컸다. 그러나 감소된 출현종수와 개체밀도는 기존종의 회복과 주변 서식종의 재점유 과정을 통해 점차 증가하였으며, 출현종수는 모래살포 후 약 3개월 뒤에, 개체밀도는 약 4개월 뒤에 본래의 수준을 회복하였다. 저서동물군집의 우점종은 모래살포 전에 A. acutum, Photis sp. 등이었으나, 모래살포 직후 Heteromastus filiformis, Macrophthalmus japonicus 등을 거쳐, 가을 이후 Musculista senhousia, Ruditapes philippinarum, Mediomastus californiensis 등으로 변해갔다. 모래살포 후 일정시간이 경과하면서 표층퇴적물의 특성과 생태지수는 모래살포 전과 유사한 수준을 회복하였으나 군집의 구조는 지속적인 종조성 변화로 인해 연구 후반까지도 모래살포 전의 구조를 회복하지 못하였다.

Keywords

References

  1. 국토해양부, 2010. 해양환경공정시험기준. 495pp.
  2. 농림수산식품부, 2011. 농림수산식품 주요통계. 594pp.
  3. 류상옥, 2003. 한반도 서해안과 남해안의 반폐쇄된 만에서 조간대 퇴적물의 계절변화에 관한 비교 연구: 서해안의 함평만과 남해안의 광양만. 한국지구과학회지, 24(6): 578-591.
  4. 류상옥, 유환수, 이종덕, 1999. 함평만 조간대의 표층퇴적물과 집적률의 계절변화. 한국해양학회지-바다, 4(2): 127-135.
  5. 마채우, 홍성윤, 임현식, 1995. 득량만의 저서동물 분포. 한국수산학회지, 28(5): 503-516.
  6. 유선재, 김종구, 조은일, 2003. 새만금 갯벌의 입도조성과 유기물질 분포특성. 한국수산학회지, 36(1): 49-54.
  7. 윤상필, 정래홍, 김연정, 김성길, 최민규, 이원찬, 오현택, 홍석진, 2009. 울산만의 저서환경 구배에 따른 저서동물군집 구조. 한국해양학회지-바다, 14(2): 102-117.
  8. 이순길, 1975. 용호만 조간대의 동물군집에 관한 연구. 한국수산학회지, 8(3): 133-149.
  9. 임현식, 박경양, 1998. 목포 주변 해역 갯벌 조간대에 서식하는 종밋 Musculista senhousia (Bivalvia: Mytilidae)의 개체군 생태 1. 분포와 성장. 한국패류학회지, 14(2): 121-130.
  10. 임현식, 최진우, 제종길, 이재학, 1992. 진해만 양식장 밀집해역의 저서동물 분포. 한국수산학회지, 25(2): 115-132.
  11. 임현식, 최진우, 2001. 한국 서남해역 함평만 조하대의 가을철 저 서동물 군집구조. 한국수산학회지, 34(4): 327-339.
  12. 장성국, 정정조, 2010. 순천만 갯벌의 입도조성 및 유기물 분포특성. 한국해양환경공학회지, 13(3): 198-205.
  13. 장진호, 최진용, 1998. 조간대 퇴적물의 계절적 집적양상과 보존: 한국 서해안의 곰소만. 한국해양학회지-바다, 3(3): 149-157.
  14. 정래홍, 윤상필, 권정노, 이재성, 이원찬, 구준호, 김연정, 오현택, 홍석진, 박성은, 2007. 해상 가두리 양식이 저서 다모류군집에 미치는 영향. 한국해양학회지-바다, 12(3): 159-169.
  15. 최정민, 이연규, 우한준, 2005. 한국 남해안 여자만 조간대 퇴적물의 시공간적 변화. 한국지구과학회지, 26(3): 253-267.
  16. 최진우, 고철환, 1994. 한국 서해의 금강-만경-동진 하구역과 주변 연안역의 저서동물군집. 한국해양학회지, 29(3): 304-318.
  17. 추용식, 권수재, 박장준, 박용안, 1996. 한국 서해중부 해빈에서의 퇴적작용의 계절변화. 해양연구, 18(1): 37-45.
  18. Botts, P.S. and B.A. Patterson, 1996. Zebra mussel effects on benthic invertebrates: physical or biotic? J. N. Am. Benthol. Soc., 15: 179- 184. https://doi.org/10.2307/1467947
  19. Burlakova, L.E., A.Y. Karatayev and V.A. Karatayev, 2012. Invasive mussels induce community changes by increasing habitat complexity. Hydrobiologia, 685: 121-134. https://doi.org/10.1007/s10750-011-0791-4
  20. Ciarelli, S., WAPMA. Vonck and N.M. van Straalen, 1997. Reproducibility of spiked-sediment bioassays using the marine benthic amphipod, Corophium volutator. Mar. Environ. Res., 4: 329-343.
  21. Clarke, K.R. and R.M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth, UK, 171 pp.
  22. Clarke, K.R., P.J. Somerfield and R.N. Gorley, 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol., 366: 56-69. https://doi.org/10.1016/j.jembe.2008.07.009
  23. Coosen, J., J. Seys, P.M. Meire and J.A.M. Craeymeersch, 1994. Effect of sedimentological and hydrodynamical changes in the intertidal areas of the Oosterschelde estuary (SW Netherlands) on distribution, density and biomass of five common macrobenthic species: Spio martinensis (Mesnil), Hydrobia ulvae (Pennant), Arenicola marina (L.), Scoloplos armiger (Muller) and Bathyporeia sp.. Hydrobiologia, 282/283: 235-249. https://doi.org/10.1007/BF00024633
  24. Crooks, J.A., 2001. Assessing invader role within changing ecosystems: Historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions, 3: 23-36. https://doi.org/10.1023/A:1011404914338
  25. Grant, J., 1981. Sediment transport and disturbance on an intertidal sandflat: infaunal distribution and recolonization. Mar. Ecol. Prog. Ser., 6: 249-255. https://doi.org/10.3354/meps006249
  26. Gray, J.S., 1974. Animal-sediment relationships. Oceanogr. Mar. Biol. Ann. Rev., 12: 223-261.
  27. Gudmundsson, H., 1985. Life history patterns of polychaete species of the family Spionidae. J. Mar. Biol. Ass. U.K., 65: 93-111. https://doi.org/10.1017/S0025315400060835
  28. Hall, S.J., 1994. Physical disturbance and marine benthic communities: life in unconsolidated sediments. Ocean. Mar. Biol. Ann. Rev., 32: 179-239.
  29. Jumars, P.A. and A.R.M. Nowell, 1984. Fluid and sediment dynamic effects on marine benthic community structure. Am. Zool., 24: 45-55. https://doi.org/10.1093/icb/24.1.45
  30. Kang, C.K., P.Y. Lee, J.S. Park and P.J. Kim, 1993. On the distribution of organic matter in the nearshore surface sediment of Korea. Bull. Korean Fish. Soc., 26: 557-566.
  31. Labrune, C., A. Grémare, J.M. Almouroux, R. Sarda, J. Gil and S. Taboada, 2007. Assessment of soft-bottom polychaete assemblages in the Gulf of Lions (NW Mediterranean) based on a mesoscale survey. Est. Coast. Shelf Sci., 71: 133-147. https://doi.org/10.1016/j.ecss.2006.07.007
  32. Maurer, D., R.T. Keck, J.C. Tinsman, W.A. Tinsman, W.A. Leatham, C.A. Wethe, M. Huntzinger, C. Lord and T.M. Church, 1978. Vertical migration of benthos in simulated dredged material overburdens. vol. I. Marine benthos. Tech Report D-78/35. US Army Engineer Waterways Experiment Station.
  33. Meadows, P.S. and A. Reid, 1966. The behaviour of Corophium volutator. J. Zool. Lond., 150: 387-399.
  34. Merz, R.A. and D.R. Edwards, 1998. Jointed setae - their role in locomotion and gait transitions in polychaete worms. J. Exp. Mar. Biol. Ecol., 228: 273-290. https://doi.org/10.1016/S0022-0981(98)00034-3
  35. Miller, D.C. and R.W. Sternberg, 1988. Field measurements of the fluid and sediment-dynamic environment of a benthic deposit feeder. J. Mar. Res. 46: 771-796. https://doi.org/10.1357/002224088785113450
  36. Milller, D.C., C.L. Muir and O.A. Hauser, 2002. Detrimental effects of sedimentation on marine benthos: what can be learned from natural processes and rates?. Ecol. Eng., 19: 211-232. https://doi.org/10.1016/S0925-8574(02)00081-2
  37. Mistri, M., 2002. Ecological characteristics of the invasive Asian date mussel Musculista senhousia in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25: 431-440. https://doi.org/10.1007/BF02695985
  38. Munari, C., 2008. Effects of the exotic invader Musculista senhousia on benthic communities of two Mediterranean lagoons. Hydrobiologia, 611: 29-43. https://doi.org/10.1007/s10750-008-9459-0
  39. Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev., 16: 229-311.
  40. Plante, C.J. and T. Busby, 2011. Influence of the facultative deposit feeder Mesochaetopterus taylori on microbial community structure of sediments. Bull. Mar. Sci., 87: 377-393. https://doi.org/10.5343/bms.2010.1069
  41. Ryu, J.S., J.S. Khim, S.G. Kang, D.S. Kang, C.H. Lee and C.H. Koh, 2011. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. Environ. Pollut., 159: 2622-2629. https://doi.org/10.1016/j.envpol.2011.05.034
  42. Savidge, W.B. and G.L. Taghon, 1988. Passive and active components of colonization following two types of disturbance on intertidal sandflat. J. Exp. Mar. Biol. Ecol., 115: 137-155. https://doi.org/10.1016/0022-0981(88)90099-8
  43. Schirosi, R., L. Musco and A. Giangrande, 2010. Benthic assemblages of Acquatina Lake (South Adriatic Sea): present state and long-term faunistic changes. Sci. Mar., 71: 235-246.
  44. Shannon, C.E. and W. Weaver, 1963. The mathematical theory of communications. University of Illinois Press, Urbana, 125pp.
  45. Shull, D.H., 1997. Mechanisms of infaunal polychaete dispersal and colonization in an intertidal sandflat. J. Mar. Res., 55: 153-179. https://doi.org/10.1357/0022240973224454
  46. Smith, C.R. and S.J. Brumsickle, 1989. The effect of patch size and substrate isolation on colonization modes and rate in an intertidal sediment. Limnol. Oceanogr., 34: 1263-1277. https://doi.org/10.4319/lo.1989.34.7.1263
  47. Snelgrove, P.V.R., 1998. The biodiversity of macrofaunal organic in marine sediments. Biodiversity Conserv., 7: 1123-1132. https://doi.org/10.1023/A:1008867313340
  48. Snelgrove, P.V.R. and C.A. Butman, 1994. Animal-sediment relationships revisited: cause versus effect. Oceanogr. Mar. Biol. Ann. Rev., 32: 111-177.
  49. Stewart, T.W., J.G. Miner and R.L. Lowe, 1998. Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: Organic matter production and shell-generated habitat. J. N. Am. Benthol. Soc., 17: 81-94. https://doi.org/10.2307/1468053
  50. Thom, R.M., T.L. Parkwell, D.K. Niyogi and D.K. Shreffler, 1994. Effects of graveling on the primary productivity, respiration and nutrient flux of two estuarine tidal flats. Mar. Biol., 118: 329-341. https://doi.org/10.1007/BF00349801
  51. Thompson, D.S., 1995. Substrate additive studies for the development of hardshell clam habitat in waters of Puget Sound in Washington State: An analysis of effects on recruitment, growth, and survival of the Manila clam, Tapes philippinarum, and on the species diversity and abundance of existing benthic organisms. Estuaries, 18(1A): 91-107. https://doi.org/10.2307/1352285
  52. Thompson, D.S. and W. Cooke, 1991. Enhancement of hardshell clam habitat by beach graveling. In: Puget Sound Research 1991 Proceedings. Puget Sound Water Quality Authority, Seattle, Washington. 2: 521-527.
  53. Toba, D.R., 1992. The effects of substrate modification on hardshell clams. Master's Thesis, University of Washington, Seatle.
  54. Thrush, S.F., R.B. Whitlatch, R.D. Pridmore, J.E. Hewitt, V.J. Cummings and M.R. Wilkinson, 1996. Scale-dependent recolonization: the role of sediment stability in a dynamic sandflat habitat. Ecology, 77: 2471-2487.
  55. Tuck, I.D., N. Bailey, M. Harding, G. Sangster, T. Howell, N. Graham and M. Breen, 2000. The impact of water jet dredging for razor clams, Ensis spp. in a shallow sandy subtidal environment. J. Sea Res., 43: 65-81. https://doi.org/10.1016/S1385-1101(99)00037-4
  56. Zajac, R.N. and R.B. Whitlatch, 1985. A hierarchical approach to modeling soft-bottom successional dynamics. In: Gibbs, P.E. (Ed.), Proceedings of the 19th European Marine Biological Symposium. Cambridge Univ. Press, Cambridge. pp. 265-276.
  57. Zajac, R.N. and R.B. Whitlatch, 2001. Responses of macrobenthic communities to restoration efforts in a New England estuary. Estuaries, 24: 167-183. https://doi.org/10.2307/1352942
  58. Zajac, R.N. and R.B. Whitlatch, 2003. Community and populationlevel responses to disturbance in a sandflat community. J. Exp. Mar. Biol. Ecol., 294: 101-125. https://doi.org/10.1016/S0022-0981(03)00262-4

Cited by

  1. The impact of sand addition to an intertidal area for the development of the Manila clam, Ruditapes philippinarum habitat on benthic community structure (the case of Ojjeom tidal flat in Gonam-myeon, Taean-gun) vol.30, pp.3, 2014, https://doi.org/10.9710/kjm.2014.30.3.259