DOI QR코드

DOI QR Code

Stock Identification of Todarodes pacificus in Northwest Pacific

북서태평양에 서식하는 살오징어(Todarodes pacificus) 계군 분석에 대한 고찰

  • Kim, Jeong-Yun (Department of Oceanography, Pukyung National University) ;
  • Moon, Chang-Ho (Department of Oceanography, Pukyung National University) ;
  • Yoon, Moon-Geun (Yangyang Salmon Station, Korea Fisheries Resources Agency) ;
  • Kang, Chang-Keun (POSTECH Ocean Science & Technology Institute, Pohang University of Sciences and Technology) ;
  • Kim, Kyung-Ryul (School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University) ;
  • Na, Taehee (School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University) ;
  • Choy, Eun Jung (Korea Polar Research Institute, KIOST) ;
  • Lee, Chung Il (Department of Marine Bioscience, Gangneung-Wonju National University)
  • 김정연 (부경대학교 해양학과) ;
  • 문창호 (부경대학교 해양학과) ;
  • 윤문근 (한국수산자원관리공단) ;
  • 강창근 (포항공과대학교 해양대학원) ;
  • 김경렬 (서울대학교 자연과학대학 지구환경과학부/해양연구소) ;
  • 나태희 (서울대학교 자연과학대학 지구환경과학부/해양연구소) ;
  • 최은정 (극지연구소) ;
  • 이충일 (강릉원주대학교 해양자원육성학과)
  • Received : 2012.08.10
  • Accepted : 2012.10.06
  • Published : 2012.11.30

Abstract

This paper reviews comparison analysis of current and latest application for stock identification methods of Todarodes pacificus, and the pros and cons of each method and consideration of how to compensate for each other. Todarodes pacificus which migrates wide areas in western North Pacific is important fishery resource ecologically and commercially. Todarodes pacificus is also considered as 'biological indicator' of ocean environmental changes. And changes in its short and long term catch and distribution area occur along with environmental changes. For example, while the catch of pollack, a cold water fish, has dramatically decreased until today after the climate regime shift in 1987/1988, the catch of Todarodes pacificus has been dramatically increased. Regarding the decrease in pollack catch, overfishing and climate changes were considered as the main causes, but there has been no definite reason until today. One of the reasons why there is no definite answer is related with no proper analysis about ecological and environmental aspects based on stock identification. Subpopulation is a group sharing the same gene pool through sexual reproduction process within limited boundaries having similar ecological characteristics. Each individual with same stock might be affected by different environment in temporal and spatial during the process of spawning, recruitment and then reproduction. Thereby, accurate stock analysis about the species can play an efficient alternative to comply with effective resource management and rapid changes. Four main stock analysis were applied to Todarodes pacificus: Morphologic Method, Ecological Method, Tagging Method, Genetic Method. Ecological method is studies for analysis of differences in spawning grounds by analysing the individual ecological change, distribution, migration status, parasitic state of parasite, kinds of parasite and parasite infection rate etc. Currently the method has been studying lively can identify the group in the similar environment. However It is difficult to know to identify the same genetic group in each other. Tagging Method is direct method. It can analyse cohort's migration, distribution and location of spawning, but it is very difficult to recapture tagged squids and hard to tag juveniles. Genetic method, which is for useful fishery resource stock analysis has provided the basic information regarding resource management study. Genetic method for stock analysis is determined according to markers' sensitivity and need to select high multiform of genetic markers. For stock identification, isozyme multiform has been used for genetic markers. Recently there is increase in use of makers with high range variability among DNA sequencing like mitochondria, microsatellite. Even the current morphologic method, tagging method and ecological method played important rolls through finding Todarodes pacificus' life cycle, migration route and changes in spawning grounds, it is still difficult to analyze the stock of Todarodes pacificus as those are distributed in difference seas. Lately, by taking advantages of each stock analysis method, more complicated method is being applied. If based on such analysis and genetic method for improvement are played, there will be much advance in management system for the resource fluctuation of Todarodes pacificus.

본 종설논문은 살오징어의 기존 및 최근에 새롭게 적용되고 있는 계군 분석방법들을 비교 분석하여 각 분석방법의 장단점과 분석방법간의 상호보완에 대하여 고찰하였다. 살오징어는 북서태평양의 넓은 지역을 회유하는 어종으로 생태계 및 상업적으로 중요한 자원이다. 살오징어는 해양환경변화의 생물학적 지표로서의 가능성을 평가 받고 있으며, 장단기적인 어획량 및 분포역의 변화가 환경 변화와 함께 나타난다. 예를 들어, 1987/1988 무렵에 발생한 기후체제전환 이후 한류성 어종으로 분류되는 명태의 어획량은 급감하여 현재까지 그 영향이 지속되고 있는 반면, 살 오징어 어획량은 크게 증가하였다. 현재까지 명태 어획량의 감소에 대하여 남획과 기후변화에 초점이 맞추어진 해석이 있으나, 뚜렷한 원인 분석은 이루어지지 않고 있다. 그 이유 중 한 가지는 계군 분석에 근거한 생태, 환경적 측면에 대한 정확한 원인 분석이 이루어지지 않고 있는 것과 관련이 된다. 계군은 유사한 생물학적 특징을 가진 개체들이 제한된 영역 내에서 유성생식과정을 통하여 동일한 유전자 풀(gene pool)을 공유하는 집단으로, 동일 계군을 형성하는 개체들은 산란에서 자원으로 가입 후 다시 재생산 과정에 이르기까지 시간 및 공간적으로 각기 다른 환경의 영향을 받을 수 있다. 따라서, 종에 대한 정확한 계군 분석은 자원의 효과적인 관리 및 급격한 변화에 대한 중요한 대응 방안의 역할을 할 수 있다. 살오징어 계군 분석에 적용된 주요 방법은 크게 4가지로 형태학적 방법, 생태학적 방법, 표지방류법, 유전학적 방법이 있다. 형태학적인 방법은 분석방법이 가장 간단하고 다수의 개체를 비교적 쉽게 분석할 수 있지만 각 형질들은 성장기간 동안 환경에 의해 영향을 많이 받게 되어 개체간의 차이가 생긴다. 생태학적 방법은 주로 개체의 생리적인 변화와 분포 및 회유상태, 기생충의 기생상태나 종류 및 기생률 등을 분석, 산란장의 차이를 알아보는 연구이며, 현재 활발히 연구되고 있는 방법으로 유사한 환경에서 생활하는 집단을 알 수 있지만 유전적으로 같은 집단인지는 알기 어렵다. 표지방류법은 직접적인 방법으로 계군의 회유 및 분포, 산란장의 위치를 파악할 수 있지만 수거가 어렵고 초기 단계에는 표식을 하기 어렵다. 수산생물의 계군 분석을 위한 유전학적 방법은 자원관리학적 연구에 관한 기본적 정보를 제공해 왔다. 계군 분석을 위한 유전학적 방법은 이에 사용하는 유전자 마커(marker)의 감도에 따라 결정되며, 유전자 마커의 다형성이 높은 것을 선택해야 한다. 계군 분석을 위한 유전자 마커로는 오랜 기간 동안 동위효소 다형이 사용되어졌으며, 최근에는 mitochondria, microsatellite와 같이 DNA 염기배열 중에서도 변이성이 높은 영역을 선택하여 마커로 이용한 연구가 증가되고 있다. 기존의 형태학적 방법, 표지방류법, 생태학적인 방법들은 살오징어의 생활사, 회유경로, 산란장의 변화 등을 밝혀내어 계군을 파악하는데 많은 기여를 하였지만 여전히 각 해역에 분포하는 살오징어의 계군을 파악하기에는 어려움이 있다. 최근에는 기존의 계군 분석이 지닌 장단점을 비교 분석하여 복합적인 방법의 계군 분석이 이루어지며, 이러한 정보들을 바탕으로 유전학적 방법을 보완한다면 살오징어 자원의 변동에 대한 관리 방안을 마련하는데 도움을 줄 것이다.

Keywords

References

  1. Araya, H., 1967. Resources of common squid, Todarodes pacificus, Steenstrup in the Japanese waters. J. Jan. Fish. Res., 16: 60. (in Japanese)
  2. Araya, H. and T. Ishii, 1972. Population structure of common squid in the waters around Hokkaido. Res. Rep. Tech. Couns. Agr. For. Fish., 57: 192-205. (in Japanese)
  3. Avise, J.C., 1994. Molecular markers, Natural History and Evolution. Chapman and Hall, New York.
  4. Bower, J.R. and Y. Sakurai, 1996. Laboratory observations on Todarodes pacificus (Cephalopoda: Ommastrephidae) egg masses. Amer. Mal. Bull., 13: 65-71.
  5. Bower, J.R, Y. Nakamura, K. Mori, J. Yamamoto, T. Isoda and Y. Sakurai, 1999. Distribution of Todarodes pacificus (Cephalopoda: Ommastrephidae) paralarvae near the Kuroshio off southern Kyushu, Japan. Mar. Biol., 135: 99-106. https://doi.org/10.1007/s002270050606
  6. Brown, W.M., M. George, Jr and A.C. Wilson, 1979. Rapid evolution of animal mitochondrial DNA. Proc. Nat'l. Acad. Sci. USA, 76: 1967-1971. https://doi.org/10.1073/pnas.76.4.1967
  7. Choi, K.H., 2005. Fishing conditions of common squid, Todarodes pacificus (Steenstrup) in relation to oceanic conditions in Korean Waters. Ph.D.Thesis. Pukyong National University, Busan, 81 pp.
  8. Choi, K.H., C.I. Lee, K.S. Hwang, S.W. Kim, J.H. Park and Y. Gong, 2008. Distribution and migration of Japanese common squid, Todarodes pacificus, in southwest part of the East (Japan)sea. Fish. Res., 91: 281-290. https://doi.org/10.1016/j.fishres.2007.12.009
  9. Doi, T. and T. Kawakami, 1978. Biomass of Japanese common squid Todarodes pacificus Steenstrup and the management of its Fishery. Bull. Tokai. Reg. Lab., 99: 65-83. (in Japanese)
  10. Dunham, R.A., 2004. Aquaculture and fisheries biotechnology. CABI Publishing press, Wallingford, pp. 104-109.
  11. Edmands, S., P. E. Moberg and R. S. Burton, 1996. Allozyme and mitochondrial DNAevidence of population subdivision in the purple sea urchin Stronglocentrotus purpuratus. Mar. Biol., 126: 443-450. https://doi.org/10.1007/BF00354626
  12. Goto, T., 2002. Paralarval distribution of Ommastrephid squid Todarodes pacificus uring fall in the southern sea of Japan, and its implication for locating spawning rounds. Bull. Mar. Sci., 71: 299-312.
  13. Hamabe, M. and T. Shimizu, 1966. Ecological studies on the common squid, Todarodes pacificus Steenstrup, mainly in the southwestern waters of Japan Sea. ull. Jap. Reg. Fish. Res. Lab., 16: 13-55.
  14. Hamasaki, K., S. Kitada, S. Toriya., H. Shishidou and T. Sugaya, 2010. Genetic effects of hatchery fish on wild population in red sea bream Pagrus major (Perciformes, Sparidae) inferred from a partial sequence of mitochondrial DNA. J.Fish. Biol., 77: 2123-2136. https://doi.org/10.1111/j.1095-8649.2010.02826.x
  15. Kang, Y.J., Y.H. Kim, Y.K. Hong, J.Y. Park and K.Y. Park, 1996. A population genetic analysis of the common Squid, Todarodes pacificus Steenstrup in the Korean waters. J. Kor. Fish. Soc., 29: 320-331.
  16. Kasahara, S. and S. Ito, 1968. Studies on the migration of common squids in the Japan Sea. 2. Migrations and some biological aspects of common squids having occurred in the offshore region of the Japan Sea during the autumn season of 1966 and 1967. Bull. Reg. Fish. Res. Lab., 20: 49-70.
  17. Kasahara, S., 1978. Descriptions of offshore Squid Angling in the Sea of Japan, with Special Reference to the Distribution of Common Squid and on the Techniques or Forecasting Fishing Conditions. Bull. Jan. Reg. Fish. Res. Lab., 29: 179-199.
  18. Kasahara, S., 1982. Population structure of Japanese common squid, Todarodes pacificus Steenstrup, in the Tsushima Warm Current area. In S.56 nendo ikarui shigen gyokaikyo kentokaigi gijiroku, Hokkaido Reg. Fish. Res. Lab. Kushiro. Japan, 47 p. (in Japanese)
  19. Kassahn, K.S., S.C. Donnellan, A.J. Fowler, K.C. Hall, M. Adams and P.W. Shaw, 2003. Molecular and morphological analyses of the cuttlefish Sepia apama indicate a complex population structure. Mar. Ecol., 143: 947-962.
  20. Kawabata, A., A. Yatsu, Y. Ueno, S. Suyama and Y. Kurita, 2006. Spatial distribution of the Japanese common squid, Todarodes pacificus, during its migration in the western North Pacific Ocean. Fish. Oceanogr., 15: 113-124. https://doi.org/10.1111/j.1365-2419.2006.00356.x
  21. Kidokoro, H., T. Goto, T. Nagasawa, H. Nishida, T. Akamine and Y. Sakurai, 2010. Impact of a climate regime shift on the migration of Japanese common squid (Todarodes pacificus) in the Sea of Japan. ICES J. Mar. Sci., 67: 1314-1322.
  22. Kim, J.H., 2007. Use of parasites for stock analysis of salmonid fishes. J. Kor. Soc. Oce., 12(2): 112-120.
  23. Kim, J.J., 2008. Summer Occurrence and Transport Process of Common Squid (Todarodes pacificus) Paralarvae in the East China Sea. M.S.Thesis. Pukyong National University, Busan, Korea. 61 pp.
  24. Kim, J.J., H.H. Lee., S. Kim and C. Park, 2011. Distribution of larvae of the common squid Todarodes pacificus in the northern east china sea. Kor. J. Fish. Aquat. Sci., 44(3): 267-275.
  25. Kim, J.Y., 2012. Stock Analysis of Todarodes pacificus in Korean waters. M.S.Thesis. Pukyong National University, Busan, 51 pp.
  26. Kim, Y.H. and Y.J. Kang, 1995. Population analysis of the common squid, Todarodes pacificus Steenstrup in Korean waters 1. Seperation of population J. Kor. Fish. Soc., 28(2): 163-173.
  27. Kim, Y.H., Y.J. Kang and C.I. Baik, 1997. Population analysis of the common squid, Todarodes pacificus Steenstrup in Korean waters 2. Morphological analysis J. Kor. Fish. Soc., 30(5): 903 pp.
  28. Kim, Y.H. and Y.J. Kang, 1998. Stomach contents analysis of the common squid, Todarodes pacificus Steenstrup in Korean Waters. J. Kor. Fish. Soc., 31: 26-30.
  29. Kim, Y.H., C. H. Moon, K. H. Choi and C. I. Lee, 2010. Relationship between squid (Todarodes pacificus) catch by sea block and marine environment in the East Sea during 1980s and 1990s. J. Kor. Soc. Mar. Env. Saf., 3: 259-268.
  30. Kim, Y.S., 1990. Population Analysis with Electrophoresis of Todarodes pacificus (STEENSTRUP) Collected from the East Sea and West Sea. M.S.Thesis, Inha University, Incheon, 46 pp.
  31. Kocher, T.D. and C.A. Stephen, 1997. Molecular systematics of fish. Academic. press. New York, 99: 1-11.
  32. Kiyofuji, H. and S.I. Saitoh, 2004. Use of nighttime visible images to detect Japanese common squid Todarodes pacificus fishing areas and potential migration routes in the Sea of Japan. Mar. Ecol. Prog. Ser., 276: 173-186. https://doi.org/10.3354/meps276173
  33. MacKenzie, K., 1983. Parasites as biological tags in fish population studies. Adv. Appl. Biol., 7: 251-331.
  34. MacKenzie, K., N. Campbell, S. Mattiucci, P. Ramos, A.L. Pinto and P. Abaunza, 2008. Parasites as biological tags for stock identification of Atlantic horse mackerel Trachurus trachurus L. Fish. Res., 89: 136-145. https://doi.org/10.1016/j.fishres.2007.09.031
  35. Mori, K. and Y. Nakamura, 2001. Migration patterns of the Pacific subpopulation of Japanese common squid Todarodes pacificus, estiamated from tagging experiments. Bull. Hokkaido Natl. Fish. Res. Inst., 65: 21-43.
  36. Mokrin, N.M., Y. Novikov and Y. Zuenko, 2002. Seasonal migrations and oceanographic conditions for concentration of the Japanese flying squid (Todarodes pacificus Steenstrup, 1880) in the northwestern Japan Sea. Bull. Mar. Sci., 71: 487-499.
  37. Murata, M., 1978. The relation between mantle length and body weight of the Squid, Todarodes pacificus Steenstrup. Bull. Hokkaido Reg. Fish. Res. Lab., 43: 3-51.
  38. Murata, M., 1989. Population assessment, management and fishery forecasting for the Japanese common squid, Todarodes pacificus. In: Marine Invertebrate Fisheries, edited by J.F. Caddy, Their Assessment and Management, Wiley, New York, pp. 613-636.
  39. Murata, M., 1990. Ocean resources of squids. Mar. Behav. Physiol., 18: 19-71. https://doi.org/10.1080/10236249009378779
  40. Murayama, T., Y. Hiyama and S. Kasahara, 1993. Why is autumn the main spawning season of the Common squid in the Japan Sea? Bull. Jap. Reg. Fish. Res. Lab., 43: 93-103.
  41. Nagasawa, K., S. Takayanagi and T. Takami, 1993. Cephalopod tagging and marking in Japan: a review. In: Recent advace in Cephalopod fisheries biology, edited by Okutani, T., O'Dor, R.K. and T. Kubodera, Tokai University Press, pp. 331-333.
  42. Nakamura, Y., 1985. Observation on periodical growth rings in the statoliths of common squid (Todarodes pacificus). Report of 1984 Annual Meeting on Resources and Fisheries of squids. Hokkaido Reg. Fish. Res. Lab., 70-73. (in Japanese)
  43. Okutani, T., 1983. Todarodes pacificus. In: Cephalopod life cycles, edited by Boyle, P.R., Vol 1. Academic Press, London, pp. 201- 216.
  44. Osako, M. and M. Murata, 1983. Stock assessment of cephalopod resources in the Northwestern Pacific. In: Advances in Assessment of World Cephalopod Resources, edited by J.F. Caddy, FAO Fish. Tech. Paper., 231: pp. 55-144.
  45. Park, L.K., M.A. Brainard, D.A. Dightman and G.A. Winans, 1993. Low levels of intraspecific variation in the mitochondrial DNA of chum salmon (Oncorhynchusketa). Mol. Mar. Biol. Biotech., 2: 362-370.
  46. Pascual, S. and F.C. Hochberg, 1996. Marine parasites as biological tags of cephalopod hosts. Parasitol. Today., 12(8): 324-327. https://doi.org/10.1016/0169-4758(96)40004-7
  47. Roper, C.F.E., R.E. Young and G.L. Voss, 1969. An illustrated key to the families of the order Teuthoidae (Cephalopoda). Smithsonian Cont. Zool., 13: 1-32.
  48. Rosa, A.L., J. Yamamoto and Y. Sakurai, 2011. Effects of environmental variability on the spawning areas, catch, and recruitment of the Japanese common squid, Todarodes pacificus (Cephalopoda: Ommastrephidae), from the 1970s to 2000s. Ices. J. Mar. Sci., 68(6): 1114-1121. https://doi.org/10.1093/icesjms/fsr037
  49. Saito, T., S. Washio, K. Dairiki, M. Shimojo, S. Ito and H. Sugita, 2008. High gene flow in Girella punctata (Perciformes, Kyphosidae) among the Japanese Islands inferred from partial sequence of the control region in mitochondrial DNA. J. Fish. Biol., 73: 1937-1945. https://doi.org/10.1111/j.1095-8649.2008.01997.x
  50. Sakurai, Y., J.R. Bower, Y. Nakamura, S. Yamamoto and K. Watanabe, 1996. Effect of temperature on development and survival of Todarodes pacificus embryos and paralarvae. Amer. Mal. Bull., 13: 89-95.
  51. Sakurai, Y., H. Kiyofuji, S. Saitoh, T. Goto and Y. Hiyama, 2000. Changes in inferred spawning sites of Todarodes pacificus (cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES. J. Mar. Sci., 57: 24-30. https://doi.org/10.1006/jmsc.2000.0667
  52. Sakurai, Y., H. Kiyofuji, S. Saitoh, J. Yamamoto, T. Goto, K. Mori and T. Kinoshita, 2002. Stock fluctuations of the Japanese common squid, Todarodes pacificus, related to recent climate changes. Fish. Sci., 68: 226-229. https://doi.org/10.2331/fishsci.68.sup1_226
  53. Sakurai, Y., J.R. Bower and Y. Ikeda, 2003. Reproductive characteristics of the ommastrephid squid Todarodes pacificus. Fisken. Og. Havet., 12: 105-115.
  54. Sakurai, Y., 2006. How climate change might impact squid populations and ecosystems: a case study of the Japanese common squid, Todarodes pacificus. Globec. Report, 24: 33-34.
  55. Shaw, P.W., A.I. Arkhipkin, G.J. Adcock, W.J. Burnett, G.R. Carvalho, J.N. Scherbich and P.A. Villegas, 2004. DNA markers indicate that distinct spawning cohorts and aggregations of Patagonian squid, Loligo gahi, do not represent genetically discrete subpopulations. Mar. Biol., 144: 961-970. https://doi.org/10.1007/s00227-003-1260-z
  56. Shojima, Y., 1972. The common squid, Todarodes pacificus, in the East China Sea-II. Eggs, larvae and spawning ground. Bull. Seikai Reg. Fish. Res. Lab., 42: 25-58.
  57. Song, H.J., G.W. Baeck, S. Kim and S.H. Huh, 2006. Feeding Habits of Todarodes pacificus (Cephalopods: Ommastrephidae) in the Coastal Waters of Busan, Korea. J. Kor. Fish. Soc., 39(1): 42-48.
  58. Taberlet, P. and J. Bouvet, 1994. Mitochondrial DNA polymorphism, phylogeography and conservation genetics of the brown bear (Ursus arctos) in Europe. Proc. R. Soc. London, B, 255: 195-200. https://doi.org/10.1098/rspb.1994.0028
  59. Takahara, H. and Y. Sakurai, 2010. Infection of the Japanese common squid, Todarodes pacificus (Cephalopoda: Ommastrephidae) by larval anisakid nematodes. Fish. Res., 106: 156-159. https://doi.org/10.1016/j.fishres.2010.05.009
  60. Tanaka, Y., 1988. Ecology of Japanese flying squid, Todarodes pacificus (Steenstrup), in northern Hokkaido waters, I. Juveniles found in the stomach of masu salmon, Oncorhynchus masou (Brevoort), in winter. Sci. Rep. Hokkaido. Fish. Exp. Stat., 30: 19-23.
  61. Voss, G.L., 1977. Present status and new trends in cepholopod systematics. Symp. Zool. Soc. London, 38: 49-60.
  62. Watanabe, K., Y. Sakurai, S. Seagawa and T. Okutani, 1996. Development of the Ommastrephid squid Todarodes pacificus, from fertilized egg to rhynchoteuthion paralarvae. Amer. Mal. Bull., 13: 73-88.
  63. Yamamoto, J., S. Masuda, K. Miyashita, R. Uji and Y. Sakurai, 2002. Investigation of the early stage of the Ommastrephid squid Todarodes pacificus near the Oki Island (Sea of Japan). Bull. Mar. Sci., 71(2): 987-992.
  64. Yamamoto, J., T. Sjimura, R. Uji, S. Masuda, S. Watanabe and Y. Sakurai, 2007. Vertical distribution of Todarodes pacificus (Cephalopoda: Ommastrephidae) paralarvae near the Oki Island, southwestern Sea of Japan. Mar. Biol., 153: 7-13. https://doi.org/10.1007/s00227-007-0775-0
  65. Zhang C.I. and S.K. Lee, 2004. Trophic Levels and Fishing Intensities in Korean Marine Ecosystems. J. Kor. Soc. Fish. Res., 6(2): 140-152.
  66. Zhang, C.I., 2010. Marine fisheries resource ecology. Pukyung National University, Busan, 559 pp.

Cited by

  1. Fluctuation of Common Squid Catches and Development Plan of Squid Industry of Ulleungdo vol.31, pp.6, 2012, https://doi.org/10.13000/jfmse.2019.12.31.6.1574