• Title/Summary/Keyword: Sand addition

Search Result 691, Processing Time 0.026 seconds

An Experimental Study on the Engineering Properties of Concrete with Kind of Fine Aggregate and Addition Ratio of Water Reducing Agents (잔골재 종류 및 감소제 첨가율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Shin, Kwan-Soo;Na, Chul-Sung;Paek, Yong-Lak;Choi, Se-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.157-160
    • /
    • 2006
  • Recently, trouble of sand supply is occurred according to exhaustion of natural sand resources. To solve this problem, sea sand and crushed sand are used. But, necessity of water reducing agent because quality of concrete that use sea sand and crushed sand is deteriorated. Therefore in this study was examined on the engineering properties of concrete with kind of fine aggregate and addition ratio of water reducing agents. As a result, compressive strength appeared similar standard regardless of kind of fine aggregate. Compressive strength, durability was similar in decrease of the unit water content by increase of addition ratio of the water reducing agent. Also, drying shrinkage resistivity was improved because the unit water content decreased.

  • PDF

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

The impact of sand addition to an intertidal area for the development of the Manila clam, Ruditapes philippinarum habitat on benthic community structure (the case of Ojjeom tidal flat in Gonam-myeon, Taean-gun) (바지락 치패발생장 조성을 위한 모래살포가 저서동물 군집구조에 미치는 영향 (태안군 고남면 옷점 갯벌 사례))

  • Yoon, Sang Pil;Song, Jae Hee;Choi, Yoon Seok;Park, Kwang Jae;Chung, Sang Ok;Han, Hyoung Kyun
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.259-271
    • /
    • 2014
  • This study was conducted to investigate the impact of sand addition to an intertidal for the development of the Manila clam habitat on benthic community structure. For this, we focused on the spatio-temporal changes in the surface sediment condition and benthic community structure including Manila clam before and after the event. Study site was the lower part of Ojjeom tidal flat in Gonam-myeon, Taean-gun where sand added to on July 2010. We set three stations at each of sand adding area (experimental plot) and non sand-adding area (control plot) and did sampling works ten times from June 2010 to October 2011. Directly after the event, surface sediments changed to very coarse sand, but the state was not maintained over two months because of seasonal sedimentation and finally got back to the original grain sizes in eight months. The number of species and density were temporarily reduced right after the event and polychaetes such as Sternaspis scutata, Ampharete arctica were most negatively affected by the event. However, the number of species and density quickly recovered from the reduction in four to six weeks owing to the recolonization by the existing species and species in the vicinity of the plot. However, despite the recovery of ecological indies, species composition was continuously changed from one to another, thereby community structure stayed unstable condition, especially in some stations with finer sediment in their original condition. After sand addition, density of Manila clam was prominently increased at only one station with coarser sediment in its original condition.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

A Study on the Behavior of the Burn-On in Sand Mold (주형사의 소착거동에 관한 연구)

  • Gwak, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.3
    • /
    • pp.41-46
    • /
    • 1985
  • The behavior of the burn-on in sand mold has been investigated by varying the pouring metal, bonding materials, additive materials and molding sand. The results obtained from thease experiments are as follows; 1) The burn-on layer of silica sand decreased in order of carbon steel, gray cast iron and stainless steel, and thease burn layer proceeded mostly by producing FeO. 2) The burning reaction of silica sand mold in carbon steel castings declined with increasingly bentonite content, but water-glass scarcely took part in the burn-on reaction. 3) The addition of feldspar and seacoal to silica sand promoted the inhibiting burn-on. 4) The burn-on layer of sand mold decreased of silica sand, chromite sand and olivine sand.

  • PDF

A Study on the Removal of Organics and Disinfection Effect in Sand Filter Using Nano Silver Sand (은나노 모래를 이용한 모래여과에서 유기물질 제거 및 소독 효과에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.16-20
    • /
    • 2012
  • In this study, novel nano silver sand filtration method was compared with UV treatment and normal sand filtration method through filtering treated water from sewage treatment plant. As a result, $BOD_5$ removal rate of nano silver sand filtration showed higher approximately 31% and 23%, comparing with UV treatment and sand filtration. Moreover, $KMnO_4$ removal rate of nano silver sand was about 6.6 and 2.8 times higher than other two methods. In addition, it showed better for removing SS and total coliform, comparing with others. Also, there is no bacteria on nano silver sand after experiments. Therefore, nano silver sand filtration will be effective for advanced water treatment.

The Method to Select the Optimal Particle Size of Earth by Optimum Micro-filler (최밀충전에 의한 흙의 적정입도 선정 방법)

  • Hwang, Hey Zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.137-143
    • /
    • 2013
  • The purpose of this study is to suggest optimum micro-filler experiment method to select the optimal particle size of earth for using in earth construction works and test this suggestion through compressive strength measurement. According to the results of selecting the method to choose the optimum micro-filler mixing of earth and sand, three-stage filling(plate tamping) showed relatively high results and so was estimated to be the proper filling method. According to the results of optimum micro-filler experiment of earth and sand by the maximal sizes of sand, between 80% and 90% showed the highest result values. The larger the maximum size of sand was, the lower the addition ratio of sand was in optimum micro-filler mixing. According to the results of compressive strength experiment by the particle sizes of earth and sand, 90% in the addition ratio of sand showed the highest results, and so tended to be similar to the results of unit volume weight experiment.

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

Improving the Initial Effluent Turbidity by Polyaluminium Chloride(PAC) Coating in Rapid Sand Filtration (급속모래여과에서 PAC 피복에 의한 초기 유출수의 탁도 개선)

  • Yoon, Tae-Han;Kim, Woo-Hang
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.253-260
    • /
    • 2002
  • The purpose of this research was to describe the mechanisms and prevention of initial degradation in turbidity of the sand filter effluent. The method used was by adding a coagulant (PAC) to the sand filter after backwashing as a means of reducing turbidity. It was found that adding 80 mg/L of PAC solution to the sand filter was very effective in improving the initial effluent turbidity. A turbidity removal efficiency of 99 % was observed in the initial term period as compared to a 70% efficiency without PAC addition. The PAC solution added to the sand filter resulted in high aluminum concentration at the upper layer as compared with the bottom layer of the sand filter column. A change in the zeta potential to a strong positive-ions at upper layer was observed at this time but only a small change was obtained at the bottom. This result showed that the zeta potential of the sand was changed to positive with PAC coating. The effect of pH on zeta potential with PAC addition was also investigated. Zeta potential was greatly changed to positive-ion at pH 4~6. A series of experiments was then conducted in this study to optimize the pH of the PAC solution to be added to the sand filter after backwashing. The removal efficiency of turbidity was found to be highest at pH 5. This result suggested that hydrolyzed aluminium species attached to the surface of the sand enhanced the removal of turbidity of the effluent.

Mock-up Test of Crushed Sand Concrete Using Quality Improvement Technology (고품질화 기술을 사용한 부순모래 콘크리트의 모의구조체 실험)

  • Yoo, Seung-Yeup;Kim, Gyu-Dong;Lee, Seung-Hoon;Yun, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.629-632
    • /
    • 2006
  • This study investigated the engineering properties of crushed sand, based on improvement quality technology, and washed sand concrete by conducting mock-up test, in order to verify the availability of crushed sand for full sized structure. Test results showed that fluidity, air content, supersonic waves and corrosion state of concrete using crushed sand had favorable results. In addition, it is found that compressive strength, drying shrinkage length change, hydration heat and neutralization of crushed sand concrete exhibited similar tendency, with that of washed sand concrete. The crushed concrete using developed quality improvement technology shows comparable performance to washed sand concrete.

  • PDF