Browse > Article
http://dx.doi.org/10.7850/jkso.2012.17.4.270

The Impact of Sand Addition to An Intertidal Area for the Development of the Manila Clam, Ruditapes philippinarum Habitat on Benthic Community Structure - the case of an sandbank in Gonam-myeon, Taean-gun -  

Yoon, Sang-Pil (Coastal Weland Research Institute, National Fisheries Research & Development Institute (NFRDI))
Song, Jae-Hee (Coastal Weland Research Institute, National Fisheries Research & Development Institute (NFRDI))
Kim, Youn-Jung (Marine Environment Research Division, National Fisheries Research & Development Institute (NFRDI))
An, Kyoung-Ho (Coastal Weland Research Institute, National Fisheries Research & Development Institute (NFRDI))
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.17, no.4, 2012 , pp. 270-282 More about this Journal
Abstract
This study was conducted to investigate the impact of sand addition to an intertidal for the development of the Manila clam habitat on benthic community structure. For this, we focused on the spatio-temporal changes in the surface sediment condition and benthic community structure before and after the event. Study site was an sandbank in Gonam-myeon, Taean-gun where sand added to on July 2010. We set three stations at each of sand adding area (experimental plot) and non sand-adding area (control plot) and did sampling works ten times from June 2010 to October 2011. Directly after the event, surface sediments changed to very coarse sand, but the state was not maintained over four months because of seasonal sedimentation and finally got back to very fine sand in eight months. The number of species and density were temporarily reduced right after the event and crustacean species such as Apocorophium acutum, Photis sp. were most negatively affected by the event. However, the number of species recovered from the reduction in three months and density did in four months due to the recolonization by the existing species and species in the vicinity of the plot. During the study period, dominant species continuously changed from the species such as A. acutum, Photis sp. at the time before the event, through the species such as Heteromastus filiformis, Macrophthalmus japonicus at the time right after the event, to the species such as Musculista senhousia, Ruditapes philippinarum, Mediomastus californiensis in the latter part of the study period. Although surface sediment properties and ecological indices recovered within a certain period after the event, the recovery of community structure has never been observed up to the end of the study.
Keywords
Sand addition; Manila clam; Disturbance; Benthic community; Recolonization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 국토해양부, 2010. 해양환경공정시험기준. 495pp.
2 농림수산식품부, 2011. 농림수산식품 주요통계. 594pp.
3 류상옥, 2003. 한반도 서해안과 남해안의 반폐쇄된 만에서 조간대 퇴적물의 계절변화에 관한 비교 연구: 서해안의 함평만과 남해안의 광양만. 한국지구과학회지, 24(6): 578-591.
4 류상옥, 유환수, 이종덕, 1999. 함평만 조간대의 표층퇴적물과 집적률의 계절변화. 한국해양학회지-바다, 4(2): 127-135.
5 마채우, 홍성윤, 임현식, 1995. 득량만의 저서동물 분포. 한국수산학회지, 28(5): 503-516.
6 유선재, 김종구, 조은일, 2003. 새만금 갯벌의 입도조성과 유기물질 분포특성. 한국수산학회지, 36(1): 49-54.
7 윤상필, 정래홍, 김연정, 김성길, 최민규, 이원찬, 오현택, 홍석진, 2009. 울산만의 저서환경 구배에 따른 저서동물군집 구조. 한국해양학회지-바다, 14(2): 102-117.
8 이순길, 1975. 용호만 조간대의 동물군집에 관한 연구. 한국수산학회지, 8(3): 133-149.
9 임현식, 박경양, 1998. 목포 주변 해역 갯벌 조간대에 서식하는 종밋 Musculista senhousia (Bivalvia: Mytilidae)의 개체군 생태 1. 분포와 성장. 한국패류학회지, 14(2): 121-130.
10 임현식, 최진우, 제종길, 이재학, 1992. 진해만 양식장 밀집해역의 저서동물 분포. 한국수산학회지, 25(2): 115-132.
11 임현식, 최진우, 2001. 한국 서남해역 함평만 조하대의 가을철 저 서동물 군집구조. 한국수산학회지, 34(4): 327-339.
12 장성국, 정정조, 2010. 순천만 갯벌의 입도조성 및 유기물 분포특성. 한국해양환경공학회지, 13(3): 198-205.
13 장진호, 최진용, 1998. 조간대 퇴적물의 계절적 집적양상과 보존: 한국 서해안의 곰소만. 한국해양학회지-바다, 3(3): 149-157.
14 정래홍, 윤상필, 권정노, 이재성, 이원찬, 구준호, 김연정, 오현택, 홍석진, 박성은, 2007. 해상 가두리 양식이 저서 다모류군집에 미치는 영향. 한국해양학회지-바다, 12(3): 159-169.
15 최정민, 이연규, 우한준, 2005. 한국 남해안 여자만 조간대 퇴적물의 시공간적 변화. 한국지구과학회지, 26(3): 253-267.
16 최진우, 고철환, 1994. 한국 서해의 금강-만경-동진 하구역과 주변 연안역의 저서동물군집. 한국해양학회지, 29(3): 304-318.
17 추용식, 권수재, 박장준, 박용안, 1996. 한국 서해중부 해빈에서의 퇴적작용의 계절변화. 해양연구, 18(1): 37-45.
18 Ciarelli, S., WAPMA. Vonck and N.M. van Straalen, 1997. Reproducibility of spiked-sediment bioassays using the marine benthic amphipod, Corophium volutator. Mar. Environ. Res., 4: 329-343.
19 Botts, P.S. and B.A. Patterson, 1996. Zebra mussel effects on benthic invertebrates: physical or biotic? J. N. Am. Benthol. Soc., 15: 179- 184.   DOI   ScienceOn
20 Burlakova, L.E., A.Y. Karatayev and V.A. Karatayev, 2012. Invasive mussels induce community changes by increasing habitat complexity. Hydrobiologia, 685: 121-134.   DOI
21 Clarke, K.R. and R.M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth, UK, 171 pp.
22 Clarke, K.R., P.J. Somerfield and R.N. Gorley, 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol., 366: 56-69.   DOI   ScienceOn
23 Coosen, J., J. Seys, P.M. Meire and J.A.M. Craeymeersch, 1994. Effect of sedimentological and hydrodynamical changes in the intertidal areas of the Oosterschelde estuary (SW Netherlands) on distribution, density and biomass of five common macrobenthic species: Spio martinensis (Mesnil), Hydrobia ulvae (Pennant), Arenicola marina (L.), Scoloplos armiger (Muller) and Bathyporeia sp.. Hydrobiologia, 282/283: 235-249.   DOI
24 Crooks, J.A., 2001. Assessing invader role within changing ecosystems: Historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions, 3: 23-36.   DOI
25 Grant, J., 1981. Sediment transport and disturbance on an intertidal sandflat: infaunal distribution and recolonization. Mar. Ecol. Prog. Ser., 6: 249-255.   DOI
26 Gray, J.S., 1974. Animal-sediment relationships. Oceanogr. Mar. Biol. Ann. Rev., 12: 223-261.
27 Kang, C.K., P.Y. Lee, J.S. Park and P.J. Kim, 1993. On the distribution of organic matter in the nearshore surface sediment of Korea. Bull. Korean Fish. Soc., 26: 557-566.
28 Gudmundsson, H., 1985. Life history patterns of polychaete species of the family Spionidae. J. Mar. Biol. Ass. U.K., 65: 93-111.   DOI
29 Hall, S.J., 1994. Physical disturbance and marine benthic communities: life in unconsolidated sediments. Ocean. Mar. Biol. Ann. Rev., 32: 179-239.
30 Jumars, P.A. and A.R.M. Nowell, 1984. Fluid and sediment dynamic effects on marine benthic community structure. Am. Zool., 24: 45-55.   DOI
31 Labrune, C., A. Grémare, J.M. Almouroux, R. Sarda, J. Gil and S. Taboada, 2007. Assessment of soft-bottom polychaete assemblages in the Gulf of Lions (NW Mediterranean) based on a mesoscale survey. Est. Coast. Shelf Sci., 71: 133-147.   DOI   ScienceOn
32 Maurer, D., R.T. Keck, J.C. Tinsman, W.A. Tinsman, W.A. Leatham, C.A. Wethe, M. Huntzinger, C. Lord and T.M. Church, 1978. Vertical migration of benthos in simulated dredged material overburdens. vol. I. Marine benthos. Tech Report D-78/35. US Army Engineer Waterways Experiment Station.
33 Meadows, P.S. and A. Reid, 1966. The behaviour of Corophium volutator. J. Zool. Lond., 150: 387-399.
34 Merz, R.A. and D.R. Edwards, 1998. Jointed setae - their role in locomotion and gait transitions in polychaete worms. J. Exp. Mar. Biol. Ecol., 228: 273-290.   DOI   ScienceOn
35 Miller, D.C. and R.W. Sternberg, 1988. Field measurements of the fluid and sediment-dynamic environment of a benthic deposit feeder. J. Mar. Res. 46: 771-796.   DOI
36 Milller, D.C., C.L. Muir and O.A. Hauser, 2002. Detrimental effects of sedimentation on marine benthos: what can be learned from natural processes and rates?. Ecol. Eng., 19: 211-232.   DOI   ScienceOn
37 Plante, C.J. and T. Busby, 2011. Influence of the facultative deposit feeder Mesochaetopterus taylori on microbial community structure of sediments. Bull. Mar. Sci., 87: 377-393.   DOI
38 Mistri, M., 2002. Ecological characteristics of the invasive Asian date mussel Musculista senhousia in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25: 431-440.   DOI   ScienceOn
39 Munari, C., 2008. Effects of the exotic invader Musculista senhousia on benthic communities of two Mediterranean lagoons. Hydrobiologia, 611: 29-43.   DOI
40 Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev., 16: 229-311.
41 Ryu, J.S., J.S. Khim, S.G. Kang, D.S. Kang, C.H. Lee and C.H. Koh, 2011. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. Environ. Pollut., 159: 2622-2629.   DOI   ScienceOn
42 Savidge, W.B. and G.L. Taghon, 1988. Passive and active components of colonization following two types of disturbance on intertidal sandflat. J. Exp. Mar. Biol. Ecol., 115: 137-155.   DOI   ScienceOn
43 Schirosi, R., L. Musco and A. Giangrande, 2010. Benthic assemblages of Acquatina Lake (South Adriatic Sea): present state and long-term faunistic changes. Sci. Mar., 71: 235-246.
44 Shannon, C.E. and W. Weaver, 1963. The mathematical theory of communications. University of Illinois Press, Urbana, 125pp.
45 Shull, D.H., 1997. Mechanisms of infaunal polychaete dispersal and colonization in an intertidal sandflat. J. Mar. Res., 55: 153-179.   DOI   ScienceOn
46 Stewart, T.W., J.G. Miner and R.L. Lowe, 1998. Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: Organic matter production and shell-generated habitat. J. N. Am. Benthol. Soc., 17: 81-94.   DOI   ScienceOn
47 Smith, C.R. and S.J. Brumsickle, 1989. The effect of patch size and substrate isolation on colonization modes and rate in an intertidal sediment. Limnol. Oceanogr., 34: 1263-1277.   DOI
48 Snelgrove, P.V.R., 1998. The biodiversity of macrofaunal organic in marine sediments. Biodiversity Conserv., 7: 1123-1132.   DOI   ScienceOn
49 Snelgrove, P.V.R. and C.A. Butman, 1994. Animal-sediment relationships revisited: cause versus effect. Oceanogr. Mar. Biol. Ann. Rev., 32: 111-177.
50 Thom, R.M., T.L. Parkwell, D.K. Niyogi and D.K. Shreffler, 1994. Effects of graveling on the primary productivity, respiration and nutrient flux of two estuarine tidal flats. Mar. Biol., 118: 329-341.   DOI
51 Thompson, D.S., 1995. Substrate additive studies for the development of hardshell clam habitat in waters of Puget Sound in Washington State: An analysis of effects on recruitment, growth, and survival of the Manila clam, Tapes philippinarum, and on the species diversity and abundance of existing benthic organisms. Estuaries, 18(1A): 91-107.   DOI
52 Thompson, D.S. and W. Cooke, 1991. Enhancement of hardshell clam habitat by beach graveling. In: Puget Sound Research 1991 Proceedings. Puget Sound Water Quality Authority, Seattle, Washington. 2: 521-527.
53 Toba, D.R., 1992. The effects of substrate modification on hardshell clams. Master's Thesis, University of Washington, Seatle.
54 Thrush, S.F., R.B. Whitlatch, R.D. Pridmore, J.E. Hewitt, V.J. Cummings and M.R. Wilkinson, 1996. Scale-dependent recolonization: the role of sediment stability in a dynamic sandflat habitat. Ecology, 77: 2471-2487.
55 Zajac, R.N. and R.B. Whitlatch, 2003. Community and populationlevel responses to disturbance in a sandflat community. J. Exp. Mar. Biol. Ecol., 294: 101-125.   DOI   ScienceOn
56 Tuck, I.D., N. Bailey, M. Harding, G. Sangster, T. Howell, N. Graham and M. Breen, 2000. The impact of water jet dredging for razor clams, Ensis spp. in a shallow sandy subtidal environment. J. Sea Res., 43: 65-81.   DOI   ScienceOn
57 Zajac, R.N. and R.B. Whitlatch, 1985. A hierarchical approach to modeling soft-bottom successional dynamics. In: Gibbs, P.E. (Ed.), Proceedings of the 19th European Marine Biological Symposium. Cambridge Univ. Press, Cambridge. pp. 265-276.
58 Zajac, R.N. and R.B. Whitlatch, 2001. Responses of macrobenthic communities to restoration efforts in a New England estuary. Estuaries, 24: 167-183.   DOI   ScienceOn