DOI QR코드

DOI QR Code

Bacterial Lipopolysaccharides Induce Steroid Sulfatase Expression and Cell Migration through IL-6 Pathway in Human Prostate Cancer Cells

  • Received : 2012.09.12
  • Accepted : 2012.10.09
  • Published : 2012.11.30

Abstract

Steroid sulfatase (STS) is responsible for the conversion of estrone sulfate to estrone that can stimulate growth in endocrine-dependent tumors such as prostate cancer. Although STS is considered as a therapeutic target for the estrogen-dependent diseases, cellular function of STS are still not clear. Previously, we found that tumor necrosis factor (TNF)-${\alpha}$ significantly enhances steroid sulfatase expression in PC-3 human prostate cancer cells through PI3K/Akt-dependent pathways. Here, we studied whether bacterial lipopolysaccharides (LPS) which are known to induce TNF-${\alpha}$ may increase STS expression. Treatment with LPS in PC-3 cells induced STS mRNA and protein in concentration- and time-dependent manners. Using luciferase reporter assay, we found that LPS enhanced STS promoter activity. Moreover, STS expression induced by LPS increased PC-3 tumor cell migration determined by wound healing assay. We investigated that LPS induced IL-6 expression and IL-6 increased STS expression. Taken together, these data strongly suggest that LPS induces STS expression through IL-6 pathway in human prostate cancer cells.

Keywords

References

  1. Ahmed, S., Owen, C. P., James, K., Sampson, L. and Patel, C. K. (2002) Review of estrone sulfatase and its inhibitors--an important new target against hormone dependent breast cancer. Curr. Med. Chem. 9, 263-273. https://doi.org/10.2174/0929867023371210
  2. Aidoo-Gyamfi, K., Cartledge, T., Shah, K. and Ahmed, S. (2009) Estrone sulfatase and its inhibitors. Anticancer Agents Med. Chem. 9, 599-612. https://doi.org/10.2174/187152009788679985
  3. Bao, H., Lu, P., Li, Y., Wang, L., Li, H., He, D., Yang, Y., Zhao, Y., Yang, L., Wang, M., Yi, Q. and Cai, Z. (2011) Triggering of toll-like receptor-4 in human multiple myeloma cells promotes proliferation and alters cell responses to immune and chemotherapy drug attack. Cancer Biol. Ther. 11, 58-67. https://doi.org/10.4161/cbt.11.1.13878
  4. Chang, M. (2011) Dual roles of estrogen metabolism in mammary carcinogenesis. BMB Rep. 44, 423-434. https://doi.org/10.5483/BMBRep.2011.44.7.423
  5. Daynes, R. A., Dudley, D. J. and Araneo, B. A. (1990) Regulation of murine lymphokine production in vivo. II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. Eur. J. Immunol. 20, 793-802. https://doi.org/10.1002/eji.1830200413
  6. Finzi, L., Shao, M. X., Paye, F., Housset, C. and Nadel, J. A. (2009) Lipopolysaccharide initiates a positive feedback of epidermal growth factor receptor signaling by prostaglandin E2 in human biliary carcinoma cells. J. Immunol. 182, 2269-2276. https://doi.org/10.4049/jimmunol.0801768
  7. Greenhill, C. J., Rose-John, S., Lissilaa, R., Ferlin, W., Ernst, M., Hertzog, P. J., Mansell, A. and Jenkins, B. J. (2011) IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J. Immunol. 186, 1199-1208. https://doi.org/10.4049/jimmunol.1002971
  8. Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  9. Harkonen, P. L. and Makela, S. I. (2004) Role of estrogens in development of prostate cancer. J. Steroid Biochem. Mol. Biol. 92, 297-305. https://doi.org/10.1016/j.jsbmb.2004.10.016
  10. Hattar, K., Savai, R., Subtil, F. S., Wilhelm, J., Schmall, A., Lang, D. S., Goldmann, T., Eul, B., Dahlem, G., Fink, L., Schermuly, R. T., Banat, G. A., Sibelius, U., Grimminger, F., Vollmer, E., Seeger, W. and Grandel, U. (2012) Endotoxin induces proliferation of NSCLC in vitro and in vivo: role of COX-2 and EGFR activation. Cancer Immunol. Immunother. [Epub ahead of print]
  11. Honma, S., Shimodaira, K., Shimizu, Y., Tsuchiya, N., Saito, H., Yanaihara, T. and Okai, T. (2002) The influence of inflammatory cytokines on estrogen production and cell proliferation in human breast cancer cells. Endocr. J. 49, 371-377. https://doi.org/10.1507/endocrj.49.371
  12. Koh, E., Noda, T., Kanaya, J. and Namiki, M. (2002) Differential expression of 17beta-hydroxysteroid dehydrogenase isozyme genes in prostate cancer and noncancer tissues. Prostate 53, 154-159. https://doi.org/10.1002/pros.10139
  13. Kriz, L., Bicikova, M. and Hampl, R. (2008) Roles of steroid sulfatase in brain and other tissues. Physiol. Res. 57, 657-668.
  14. Li, H., Yuan, X., Tang, J. and Zhang, Y. (2012). Lipopolysaccharide disrupts the directional persistence of alveolar myofibroblast migration through EGF receptor. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L569-579. https://doi.org/10.1152/ajplung.00217.2011
  15. Lu, H., Ouyang, W. and Huang, C. (2006) Inflammation, a key event in cancer development. Mol. Cancer Res. 4, 221-233. https://doi.org/10.1158/1541-7786.MCR-05-0261
  16. Makela, S. M., Strengell, M., Pietila, T. E., Osterlund, P. and Julkunen, I. (2009) Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells. J. Leukoc. Biol. 85, 664-672. https://doi.org/10.1189/jlb.0808503
  17. Nakamura, Y., Suzuki, T., Nakabayashi, M., Endoh, M., Sakamoto, K., Mikami, Y., Moriya, T., Ito, A., Takahashi, S., Yamada, S., Arai, Y. and Sasano, H. (2005) In situ androgen producing enzymes in human prostate cancer. Endocr. Relat. Cancer 12, 101-107. https://doi.org/10.1677/erc.1.00914
  18. Nussbaumer, P. and Billich, A. (2005) Steroid sulfatase inhibitors: their potential in the therapy of breast cancer. Curr. Med. Chem. Anticancer Agents 5, 507-528. https://doi.org/10.2174/1568011054866955
  19. Okada, H., Ohtsuka, H., Kon Nai, S., Kirisawa, R., Yokomizo, Y., Yoshino, T. and Rosol, T. J. (1999) Effects of lipopolysaccharide on production of interleukin-1 and interleukin-6 by bovine mammary epithelial cells in vitro. J. Vet. Med. Sci. 61, 33-35. https://doi.org/10.1292/jvms.61.33
  20. Park, J. H., Kwon, S. M., Yoon, H. E., Kim, S. A., Ahn, S. G. and Yoon, J. H. (2011) Lipopolysaccharide promotes adhesion and migration of murine dental papilla-derived MDPC-23 cells via TLR4. Int. J. Mol. Med. 27, 277-281.
  21. Pasqualini, J. R. (2009) Breast cancer and steroid metabolizing enzymes: the role of progestogens. Maturitas 65 Suppl 1, S17-21. https://doi.org/10.1016/j.maturitas.2009.11.006
  22. Phan, C. M., Liu, Y., Kim, B. M., Mostafa, Y. and Taylor, S. D. (2011) Inhibition of steroid sulfatase with 4-substituted estrone and estradiol derivatives. Bioorg. Med. Chem. 19, 5999-6005. https://doi.org/10.1016/j.bmc.2011.08.046
  23. Purohit, A. and Foster, P. A. (2012) Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. J. Endocrinol. 212, 99-110. https://doi.org/10.1530/JOE-11-0266
  24. Purohit, A., Wang, D. Y., Ghilchik, M. W. and Reed, M. J. (1996) Regulation of aromatase and sulphatase in breast tumour cells. J. Endocrinol. 150 Suppl, S65-71.
  25. Purohit, A., Woo, L. W. and Potter, B. V. (2011) Steroid sulfatase: a pivotal player in estrogen synthesis and metabolism. Mol. Cell. Endocrinol. 340, 154-160. https://doi.org/10.1016/j.mce.2011.06.012
  26. Reed, M. J. (1995) The discriminant-function test: a marker of Th1/Th2 cell cytokine secretion and breast tumour oestrogen synthesis. Mol. Med. Today 1, 98-103. https://doi.org/10.1016/S1357-4310(95)92435-3
  27. Reed, M. J. and Purohit, A. (1997) Breast cancer and the role of cytokines in regulating estrogen synthesis: an emerging hypothesis. Endocr. Rev. 18, 701-715. https://doi.org/10.1210/er.18.5.701
  28. Reed, M. J., Purohit, A., Woo, L. W., Newman, S. P. and Potter, B. V. (2005) Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr. Rev. 26, 171-202. https://doi.org/10.1210/er.2004-0003
  29. Sawa, Y., Ueki, T., Hata, M., Iwasawa, K., Tsuruga, E., Kojima, H., Ishikawa, H. and Yoshida, S. (2008) LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J. Histochem. Cytochem. 56, 97-109. https://doi.org/10.1369/jhc.7A7299.2007
  30. Schetter, A. J., Heegaard, N. H. and Harris, C. C. (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31, 37-49. https://doi.org/10.1093/carcin/bgp272
  31. Schmidt, M., Kreutz, M., Loffler, G., Scholmerich, J. and Straub, R. H. (2000) Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J. Endocrinol. 164, 161-169. https://doi.org/10.1677/joe.0.1640161
  32. Stanway, S. J., Delavault, P., Purohit, A., Woo, L. W., Thurieau, C., Potter, B. V. and Reed, M. J. (2007) Steroid sulfatase: a new target for the endocrine therapy of breast cancer. Oncologist. 12, 370-374. https://doi.org/10.1634/theoncologist.12-4-370
  33. Suzuki, T., Miki, Y., Nakamura, Y., Moriya, T., Ito, K., Ohuchi, N. and Sasano, H. (2005) Sex steroid-producing enzymes in human breast cancer. Endocr. Relat. Cancer 12, 701-720. https://doi.org/10.1677/erc.1.00834
  34. Suzuki, T., Nakata, T., Miki, Y., Kaneko, C., Moriya, T., Ishida, T., Akinaga, S., Hirakawa, H., Kimura, M. and Sasano, H. (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res. 63, 2762-2770.
  35. Tajima, T., Murata, T., Aritake, K., Urade, Y., Hirai, H., Nakamura, M., Ozaki, H. and Hori, M. (2008) Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J. Pharmacol. Exp. Ther. 326, 493-501. https://doi.org/10.1124/jpet.108.137992
  36. Utsumi, T., Yoshimura, N., Takeuchi, S., Maruta, M., Maeda, K. and Harada, N. (2000) Elevated steroid sulfatase expression in breast cancers. J. Steroid Biochem. Mol. Biol. 73, 141-145. https://doi.org/10.1016/S0960-0760(00)00060-1
  37. Walton, K. L., Holt, L. and Sartor, R. B. (2009) Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G601-611. https://doi.org/10.1152/ajpgi.00022.2008
  38. Wang, J. H., Manning, B. J., Wu, Q. D., Blankson, S., Bouchier-Hayes, D. and Redmond, H. P. (2003) Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J. Immunol. 170, 795-804. https://doi.org/10.4049/jimmunol.170.2.795
  39. Wilson, J. W., Schurr, M. J., LeBlanc, C. L., Ramamurthy, R., Buchanan, K. L. and Nickerson, C. A. (2002) Mechanisms of bacterial pathogenicity. Postgrad. Med. J. 78, 216-224. https://doi.org/10.1136/pmj.78.918.216
  40. Wright, R. M., Holladay, C. S. and Spangelo, B. L. (1993) Lipopolysaccharide induces interleukin-6 release from rat peritoneal macrophages in vitro: evidence for a novel mechanism. Circ. Shock 41, 131-137.

Cited by

  1. Novel effects of FTY720 on perinuclear reorganization of keratin network induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12 vol.775, 2016, https://doi.org/10.1016/j.ejphar.2016.02.024
  2. Evidence of estrone-sulfate uptake modification in young and middle-aged rat prostate vol.152, 2015, https://doi.org/10.1016/j.jsbmb.2015.05.002
  3. Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II vol.223, pp.2, 2013, https://doi.org/10.1016/j.toxlet.2013.09.006
  4. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1 vol.151, pp.3, 2014, https://doi.org/10.1016/j.jep.2013.12.033
  5. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract vol.155, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.05.013
  6. 3D Spheroid Culture Enhances the Expression of Antifibrotic Factors in Human Adipose-Derived MSCs and Improves Their Therapeutic Effects on Hepatic Fibrosis vol.2016, 2016, https://doi.org/10.1155/2016/4626073
  7. Anti-inflammatory effect of Varthemia iphionoides extracts against prostate cancer in vitro vol.15, pp.1, 2017, https://doi.org/10.1177/1721727X17702151
  8. Steroid sulfatase in the human MG-63 preosteoblastic cell line: Antagonistic regulation by glucocorticoids and NFκB vol.420, 2016, https://doi.org/10.1016/j.mce.2015.11.029
  9. Lipopolysaccharides attenuates growth of HS cells through the JNK pathway vol.68, pp.6, 2016, https://doi.org/10.1007/s10616-016-9954-5
  10. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells vol.33, pp.6, 2015, https://doi.org/10.3892/or.2015.3888
  11. Induction of Integrin Signaling by Steroid Sulfatase in Human Cervical Cancer Cells vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2016.155
  12. Estrogen receptor β suppresses inflammation and the progression of prostate cancer vol.19, pp.5, 2012, https://doi.org/10.3892/mmr.2019.10014
  13. Metabolic Fingerprinting of Feces from Calves, Subjected to Gram-Negative Bacterial Endotoxin vol.11, pp.2, 2012, https://doi.org/10.3390/metabo11020108